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ABSTRACT

A decentralized suboptimal linear quadratic control design procedure
which combines substructural synthesis, model reduction, decentralized con-
trol design, subcontroller synthesis, and controller reduction is proposed for
the design of reduced-order controllers for flexible structures. The procedure
starts with a definition of the continuum structure to be controlled. An evalua-
tion model of finite dimension is obtained by the finite element method. Then,
the finite element model is decomposed into several substructures by using
a natural decomposition called substructuring decomposition. Each substruc-
ture, at this point, still has too large a dimension and must be reduced to a size
that is “Riccati-solvable.” Model reduction of each substructure can be per-
formed by using any existing model reductions method, e.g., modal truncation,
balanced reduction, Krylov model reduction, or mixed-mode method. Then,
based on the reduced substructure model, a subcontroller is designed by an LQ
optimal control method for each substructure independently. After all subcon-
trollers have been designed, a controller synthesis method called Substructural
Controller Synthesis is employed to synthesize all subcontrollers into a global
controller. The assembling scheme used is the same as that employed for the
structure matrices. Finally, a controller reduction scheme; called the Equiva-
lent Impulse Response Energy Controller (EIREC) reduction algorithm, is used
to reduce the global controller to a reasonable size for implementation. The
EIREC reduced controller preserves the impulse response energy of the full-

order controller and has the property of matching low-frequency moments and

il



low-frequency power moments. An advantage of the Substructural Controller
Synthesis method is that it relieves the computational burden associated with
dimensionality. Besides that, the SCS design scheme is also a highly adapt-
able controller synthesis method for structures with varying configuration, or

varying mass and stiffness properties.
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Chapter 1

INTRODUCTION

Largely because the highly advanced space technology has made the con-
struction of large space structures possible in the very near future, the problem
of control of flexible structures has received a great deal of attention in recent
years. In fact, control of flexible structures has emerged as an interdisciplinary
research topic called Control/Structure Interaction (CSI), which attracts re-
searchers from both controls and structural dynamics areas. A number of
conferences and workshops specialized on control of flexible structures have
been held recently to promote technical exchange between the structural dy-
namics and control disciplines. Reference [31] provides a lengthy bibliography
to survey the developments of particular importance to dynamic modelling and

control of large space structures.

CSI problems involve combining advanced structural dynamics analysis
and identification techniques with advanced control methods. A major dif-
ficulty that makes control of flexible structures different from other control
problems is due to the fact that a flexible structure is a distributed system
and, hence, has an infinite number of degrees of freedom. This very nature of
structural systems hinders the direct application of the existing well-developed
control methods. Although there is a branch of study on the control of dis-

tributed systems[1, 27], its application is limited to simple structures like beams



and plates, but it is not applicable to structures with complicated geometry. In
practice, a structural system is usually modelled by the finite element method,
along with modifications based upon system identification test data. For a
large space structure, e.g., Fig. 1.1, such a model attains at least tens of thou-
sands of degrees of freedom, which is a major computational task for dynamic
analysis not to mention too large a scale for control design. Therefore, for
the purposes of efficient computation and easy control implementation, model
reduction is an inevitable procedure for dynamic analysis and control design of

large structures.

There are various open-loop model reduction approaches for structural
dynamics systems, such as static condensation, Guyan-Irons reduction, mode-
superposition method, component mode synthesis, and the Lanczos method.
The purpose of model order reduction is to construct a simplified but repre-

sentative model upon which a controller design can be based.

Although there is a wealth of new and sophisticated control methods,
e.g., H® control theory, linear quadratic optimal control methodology (for
which Ref. [21] has a fine review) still is the one that has provided the most
complete multivariable design and synthesis theory yet available. For this rea-
son, LQ control theory is the method frequently used by control engineers to
design controllers for flexible structures. As mentioned before, it is not possible
to design an optimal LQ controller for a large scale structural dynamics sys-
tem because the size of the system exceeds the available computing capability,
i.e., the system is not “Riccati-solvable.” Therefore, a traditional approach to
synthesize a controller for a flexible structure is to use a suboptimal LQ design

strategy. A flow chart similar to the one in Ref. [2] is shown in Fig. 1.2 to
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summarize the suboptimal LQ design procedure. It is called a “centralized”

suboptimal LQ design procedure for a reason to be clarified later.

There are three alternative centralized suboptimal LQ design approaches
illustrated in Fig. 1.2. All approaches begin with the definition of a continuum
structure, which theoretically has infinite dimension. An evaluation model of
order N, which is too large for controller design purposes, is obtained by the
finite element method. The objective of each of the three fundamental ap-
proaches is to synthesize a low order controller of dimension r <« N. In the
first ca.rsei(ﬁath A), the structure is reduced directly to order r and then an LQ
method is employed to produce a controller which is optimal for the r-th order
model. In the second case (path B), the structure is first reduced to a large
order n such that it is still Riccati-solvable and an LQ controller can be synthe-
sized based upon the n-th order model. The controller obtained is then reduced
to order r by employing some controller reduction method. This approach is
referred as Linear-Quadratic Reduction in Ref. [13]. Controller reduction by
Component Cost Analysis[45] and balanced controller reduction[9, 22, 28, 40]
belong to this approach. In the third case (path C), the structure is reduced
to order m (r < m < n). Then, a parameter optimization method is used to
determine the controller of order r by minimizing some performance criterion.
The optimal projection method of Hyland and Bernstein[17] belongs to this
approach. The resulting r-th order controller is optimal for the m-order struc-
ture in that it is derived from a direct optimization of a steady-state quadratic
performance index for the closed-loop equations including the controller. For
all three cases, the last step is to apply the r-th order controller obtained to

the evaluation model! for a stability study and performance evaluation.
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The most costly computing part in the suboptimal LQ design is the
synthesis of controller. Among the three alternatives, the computational bur-
den of path A is the lowest because the control design is of r-th dimension.
However, it requires an r-th order reduced model which can approximate the
input-output characteristics of the evaluation model very well. If r is very much
smaller than N, which is usually the case, the existing reliable model reduction
methods may all fail to meet this requirement. Therefore, path A is not a fa-
vorable approach and is not recommended. For the optimal projection method
(path C), the computational burden is very high because it requires iteration
to solve a coupled set of matrix Lyapunov and Riccati equations of dimension
m + r. These coupled Lyapunov and Riccati equations are derived from the
first-order necessary conditions for optimality. In general, convergence of the
iterative scheme is not assured, and the resulting solution is not guaranteed to
be globally optimal, especially when m is large. Therefore, the optimal projec-
tion method is strongly restricted by the available computing capability. Path
B seems to be the most reasonable approach among the three alternatives to
a suboptimal LQ controller design. It combines reliable plant model reduction
and controller reduction into an integrated approach for the control design of
large structures, as long as dimension of the reduced-order model, n, does not

exceed the computer capability for solutions of Riccati equations.

As mentioned before, the suboptimal LQ design procedure shown in Fig.
1.2 is classified as a centralized design scheme. The term “centralized” means
that the controller design is based on a reduced model for the “whole” struc-
ture. In this report, a decentralized control design scheme called Substructural

Controller Synthesis (SCS) is proposed for the controller design of flexible struc-



tures. A decentralized design scheme has advantages over a centralized design

in many respects.

1.1 Substructural Controller Synthesis

First, the definition of the term decentralized needs to be clarified. There
has been an increasing interest in decentralized control of large scale systems
in very recent years (see the literature included in Refs. [49] and [50]). In these
decentralized problems, the system to be controlled has several local control
stations with the controller of each station being constrained to measure only
local system outputs and control only local system inputs. In this sense, de-
centralized control means that “control implementation” is decentralized in the
sense that each local controller works independently. However, the interactions
among all local stations must be taken into consideration in the design of each
local controller in order to coordinate the overall performance, since, in actual
fact, all controllers are involved in controlling the whole system. The decen-
tralized control design scheme proposed in this section, is, rigorously speaking,
not a decentralized control, because the final controller employed to control
the system is a global controller, but not a group of local controllers. Nev-
ertheless, the control design is decentralized in that the global controller is
assembled from subcontrollers which are designed solely based on local system
input-output characteristics. Therefore, the Substructural Controller Synthe-
sis method proposed here is a decentralized control design scheme, but not a
decentralized control implementation scheme. This difference is pointed out
here to avoid confusion with the definition used by some decentralized control

researchers, although in some literature a global control implementation with



decentralized design is also called decentralized control, e.g., Ref. [20].

The procedure of Substructural Controller Synthesis is summarized by
the flow chart shown in Fig. 1.3. It is a suboptimal LQ control design with
controller design decentralized. The procedure starts with a definition of the
continuum structure to be controlled. An evaluation model of finite dimension
is obtained by the finite element method. Then, the finite element model is
decomposed into several substructures by using a natural decomposition called
substructuring decomposition. Substructuring decomposition is based on the
well-known property of structural dynamics systems: the system matrices of
the whole structure can be obtained by assembling the system matrices of sub-
structures. Although structural dynamics systems are frequently described in
matrix second-order form, substructuring decomposition is formulated in first-
order form since the control design is based on the first-order equation form.
Each substructure, at this point, still has too large a dimension and must be
reduced to a size that is Riccati-solvable. Any existing reliable model reduction
method can be employed to reduce the substructure, e.g., modal truncation,
component mode synthesis, or Krylov model reduction. Then, based on the re-
duced substructure model, a subcontrolleris designed by an LQ optimal control
method independently for each substructure. The name subcontroller does not
imply a sub-controller, which works like a low authority controller, but is used
to indicate that it is a controller optimal to and designed foxv' a substructure. Af-
ter all subcontrollers have been designed, a controller synthesis method called
Substructural Controller Synthesis (SCS) is employed to synthesize all subcon-
trollers into a global controller. The assembling scheme used is the same as

that employed for the structure matrices. Finally, a controller reduction scheme
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called Equivalent Impulse Response Energy Controller (EIREC) reduction al-
gorithm is used to reduce the global controller obtained to a reasonable size for

implementation.

The SCS method has many advantages over the traditional centralized
suboptimal LQ design approach. First of all, the computational burden associ-
ated with dimensionality is substantially reduced because the control design is
carried out at the substructure level, which is of smaller size than a structure
level control design. In a centralized suboptimal LQ design, the dimension of
the reduced structure model is restricted to an order for which solution of the
Riccati equation is possible. For the SCS design, this restriction is imposed on
substructures instead of the whole structure, which means the structure overall
is approximated by a reduced model of order equal to the sum of orders of all
substructures. An even bolder statement is that open-loop model reduction
is not required in SCS design if the structure is decomposed into hundreds of
small substructures, each of Riccati-solvable size. Secondly, the SCS controller
can be updated very economically if part of the structure changes. A space
structure like the one shown in Fig. 1.1 is a changing system because the space
shuttle docks and leaves, the solar panels change directions, and the payload
grows. For a changing structure like this, an SCS controller is highly adaptable
as long as an on-line computer can keep ‘up with the system changes. Since
the SCS controller is synthesized from subcontrollers, if one substructure has a
configuration or system parameter change, the only subcontroller which needs
to be redesigned is the one associated with that substructure. On the other
hand, for a controller based on a centralized design scheme, a slight change of

the structure may require a full-scale redesign.
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1.2 Preview

The organization of this report is as follows. The definitions, background,
and literature related to the problem of control of flexible structures are de-
scribed in Chapter 1. It also includes flow charts to describe the traditional
centralized suboptimal LQ design and a novel decentralized suboptimal LQ

design for the control of flexible structures.

In Chapter 2, the decentralized control design summarized in Fig. 1.3
is formulated. First, substructuring decomposition is defined for a general lin-
ear time-invariant system described in a first-order form. Then, it is shown
that substructuring decomposition is a natural decomposition for structural
dynamics systems. Based on the substructuring decomposition, a Substruc-
tural Controller Synthesis method is derived for the control design of flexible
structures. Two plane truss examples are used to study the performance of an

SCS controller.

In Chapter 3, some model reduction methods frequently used for struc-
tural dynamics systems are briefly reviewed. The methods reviewed are: modal
truncation, balanced reduction, balanced gain method, Krylov model reduc-

tion, and mixed-mode method.

In Chapter 4, an efficient controller reduction algorithm is developed.
The reduced-order controller is called an Equivalent Impulse Response Energy
Controller (EIREC) because it has the same impulse response energy as the full-
order controller. The proposed controller reduction method is, in fact, a model-
order reduction method applied to a controller. It is shown that the EIREC

controller has interesting and useful properties, such as moment-matching, min-
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imality, and stability. Efficacy of the proposed controller reduction is validated
by two examples. Comparison of computational effort with existing controller

reduction methods is also made.

Finally, in Chapter 5, a number of conclusions are drawn. Recommen-

dations and future research directions are also addressed.



Chapter 2

SUBSTRUCTURING DECOMPOSITION AND
CONTROLLER SYNTHESIS

Although many decentralized control methods have been developed for
general linear systems, the application of decentralized control to flexible struc-
tures is still in its infancy. Most of the existing decentralized control methods
for flexible structures either adopt or extend the concepts and methodology de-
veloped for general linear systems. In Ref. [43], Young applies the overlapping
decomposition method, which was developed by Ikeda and Siljak for large scale
systems [18], to the control design for structures. In order for the overlapping
decomposition method to be applied effectively, Young developed an approxi-
mate finite element model for the structure resulting in a first-order equation
with system matrices in block tri-diagonal form. Later, in Ref. [44], Young
combined the well-developed Component Mode Synthesis (CMS) method, for
which Ref. [7] has an extensive review, with the overlapping decomposition
concept to develop a Controlled Component Synthesis (CCS) method. The
finite element models for the components are produced by an approach, called
Isolated Boundary Loading, which is based on the boundary stiffness and iner-
tia loading process of Benfield and Hruda [3]. The controller design is carried
out at the component level. Then the large complex structure is synthesized
from the controlled components. The idea behind the CCS approach is the

same as that behind the CMS method. However, the way the structure is de-

13
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composed is not the same. Recently, in an attemp to simplify the decentralized
control design for structures, Yousuff extended the concept of inclusion princi-
ple, which was developed along with the overlapping decomposition method by
Tkeda et.al.[19], to systems described in matrix second-order form [48]. The sub-
structural model in Yousuff’s work is an expanded component, i.e., the original
boundary of the component is expanded into the adjacent component, which
is similar to the substructure used in Young’s CCS method. The expanded

component is a result of overlapping decomposition.

In this chapter, a decentralized control design process called Substruc-
tural Controller Synthesis (SCS) is proposed. First, a natural decomposition,
called substructuring decomposition, of structural dynamics systems is defined.
It is well known that for dynamics equations described in matrix second-order
form, the system matrices of the whole structure can be assembled from the
system matrices of substructures. Since the optimal control design is based on
the first-order equations, the substructuring decomposition method is formu-
lated in first-order form. It is shown that for dynamics equations in matrix
first-order form, it is still true that the system matrices of the whole struc-
ture can be assembled from the system matrices of substructures. Based on
substructuring decomposition of the structure, control design can be carried
out substructure by substructure. For each substructure, a subcontroller is de-
signed by an optimal control design method. Then, the global controller, which
is to be used to control the whole structure, is synthesized from the subcon-
trollers by using the same assembling scheme as that employed for structure
matrices. The final control implementation is centralized, which means the

final controller for implementation is a system controller. However, the control
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design is decentralized, because each subcontroller is designed independently.

The substructure used in the Substructural Controller Synthesis method
is a natural component, i.e., not an expanded component like that in Young’s
method. One advantage of using natural components is that SCS can be ef-
fectively incorporated with the Component Mode Synthesis method to design
controllers for large scale structures. The substructures can be modelled by a
CMS method and then assembled together to form an approximate model for
the whole structure. The subcontrollers can be designed based on the CMS
substructures and can then be assembled together to form a global controller
for the whole structure. Another attractive feature of the SCS controller is
that it can be updated economically if part of the structure changes. Since the
global controller is synthesized from subcontrollers, if one substructure has a
configuration or system parameter change, the only subcontroller which needs
to be redesigned is the one associated with that substructure. Therefore, the
SCS controller is, in fact, an adaptable controller for structures with varying

configuration and/or with varying mass and stiffness properties.

The organization of this chapter is as follows. In Section 2.1, substructur-
ing decomposition is defined for a general linear time-invariant system described
by a first-order equation. It is shown that all linear systems have substruc-
turing decompositions, although there might not be an appropriate physical
interpretation for such decompositions. In Section 2.2, z; substructuring de-
composition for structural dynamics systems is developed. Then, based on the
substructuring decomposition, a Substructural Controller Synthesis method is
formulated in Section 2.3. An LQGSCS Algorithm for the process of Substruc-
tural Controller Synthesis based on the LQG optimal control design method 1s
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established. Finally, in Section 2.4, a plane-truss example is used to illustrate
the applicability of the proposed method. The decentralized control design
approach for structural control developed in this chapter is summarized by
Figure 1.3 in Chapter 1. Part of the material in this chapter is presented in
Ref. {39, 38].

2.1 Substructuring Decomposition

Consider a linear time-invariant system described by

Sz=Az+ Bu

y=Cx (2.1)

where z € R™ is the state vector, u € R' is the input vector, and y € R™ is
the output vector. S, A, B, and C are the system matrices with appropriate
dimensions. The difference between the above description and the conven-
tional state-space form of a linear system is the S matrix, which, of éourse,
can be eliminated if the state equation is premultiplied by S~!. There ex-
ist some linear systems, for instance, structural dynamics systems, which are
easier to analyze if the system is described in the form of Eq. (2.1). There-
fore, we consider Eq. (2.1), a more general form for the representation of linear
time-invariant systems. The conventional state-space form is a special case of

Eq. (2.1) with S equal to the identity matrix.

Next, consider another linear time-invariant system described by

_é (2.2)

e

8% = Az + Bu
y
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with the system matrices in the following block diagonal form

[ S, A
" S. v A
3= 2 A= 2
! Sy A,
[ B, C,
. B . C.
B= 2 ¢ = ?
X B, C,
and
2 Uy 51
. Z2 Uz Y2
Z = u = y = .
2y Uy Yo

The dimensions of the variables are z; € R™, u; € R,and y; € R™. It
is assumed that system (2.1) and system (2.2) have the same set of inputs
(S¥_,I; = 1) and the same set of outputs (i, mi = m). Therefore, it is
appropriate to use u and y in Eq. (2.2) as well as in Eq. (2.1). Because of the
block diagonal form of the system matrices, system (2.2) is, in fact, a collection

of v decoupled subsystems

S;2; = Aizi + Biu; ,
! i=1,2 ..., v (2.3)
yi = Cizi

Now let us define a substructuring decomposition. System (6.2) is said
to be a substructuring decomposition of system (2.1) if there exists a coupling

matriz T such that the following relationships hold

S=TT3F A=TTAT B=T"B C=CT (2.4)
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and if the states of the two systems can be related by
:=Tz (2.5)

The above relationships merely state that the system matrices of system (2.1)
are assemblages of the system matrices of the subsystems in Eq. (2.3). There-
fore, system (2.1) will be referred to as the assembled system and system (2.2)

will be referred to as the unassembled system.

All multi-input multi-output systems are, in fact, substructurally decom-

posable. For instance,
aS 0 H| _|ad O a2l B, 0 Uy
0 ﬂS 22 - 0 ,BA F4) 0 B2 Uz
y= hh | _ C, 0 { 21
Y2 0 G, 2g

is a substructuring decomposition of system (2.1) for all a+ 8 = 1if [B; By =
B, [CT CT] = CT. The coupling matrix is T = [I, I,]".

As another example, consider the system

S Si2 0 z An A O 21
521 522 Sas Z3 = A21 A22 Ay 22
0 Sz S 23 0 Az Asx 23

B, .
+ | Ba Bz { } (2.6)
0 By | '™

Jwnl_{Cn Ca2 0 1
y—{yz}_[ 0 Cyx 023]{?}

3

which has block tri-diagonal system matrices. It can be shown that the above
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system is an assemblage of the following two subsystems

St 512 2 — An A 2 + Bl_l u
521 aSy; 2 Axn aAs, 22 By !

(2.7)
hh = [Cu 012]{ 2 }
[ﬂszz 523]{52 }=[ﬂA22 Azs]{zz }+[Bzz]u
Saz  Sa3 23 Az Ass 23 B3, g (2 8)

Y2 = [022 023]{ Z }

with the coupling matrix being

T =

OO ~
O~~~ O
~_o OO

and with the condition that a+ 8 = 1. It is seen that z; serves as the interface

state between the two subsystems.

For many real-world systems, there might not be a physical interpreta-
tion for the above substructuring decomposition, although mathematically it
can always be done. However, there do exist some systems which, by nature,
provide a strong physical motivation for such a substructuring decomposition.

Structural dynamics systems are the ones that interest us at this point.

2.2 Substructuring Decomposition of Structural
Dynamics Systems
In this section, the substructuring decomposition of a structural dynam-
ics system is formulated. Without loss of generality, we will consider a structure

composed of two substructures which have a common interface, as shown in
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Figure 2.1: Two-component structure

Figure 2.1. It is assumed that the control inputs and the measurement outputs
are localized. In the present context, “localized control inputs” means that the
actuators are distributed such that u, is applied to the a-substructure only and
ug is applied to the S-substructure only. “Localized measurements” means that
Yo measures only the response of the a-substructure and yg measures only the

response of the G-substructure.

Let the equations of motion of the two substructures be represented by
M;z; 4+ D;z; + Kiz; = Pu; )
. i=a, B (2.9)
yi = Vizi + Wiz,
It is noted here that the above dynamics equations for the substructures do
not have to be exact (full-order) models. They can be approximate (reduced-
order) models obtained by any model reduction method, say a Component
Mode Synthesis method [7]. The dynamics of the the assembled structure (the
structure as a whole) is described by
Mzi+ Di+ Kz = Pu
) (2.10)
y=Vec+ Wz

Since the two substructures have a common interface and are parts of the

assembled structure, the displacement vectors of the substructures and the
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displacement vector of the assembled structure are related. There exists a

coupling matrix T' which relates z4, Zg, to  as follows: )
To | _ - T,
{wﬂ}—T:c—[Tﬁ]a: (2.11)
Given the coupling matrix T, it can be shown that the system matrices of the

assembled structure and the system matrices of the substructures satisfy the

following relations:

M, 0O D, 0 K, 0

_ 7T o 7T o T a

M=T [0 Mﬁ]T’D—T [0 Dﬁ]T’K_T [0 Kﬁ]T 012
P, 0 Vo O W, 0 -

— 7T o V = o —_ o

P'T[o Pﬂ]’ “[ovﬁ]T’ ”—[0 W;;]T

The above relationships can be proved by using the method of Lagrange’s
equation of motion [6]. Therefore, it is an inherent property of structural dy-
namics systems that the system matrices of the assembled structure can be
obtained by assembling the system matrices of the substructures. This prop-
erty is, in fact, the essence of all “matrix assemblage” methods, e.g., the Finite
Element Method and Component Mode Synthesis. The above formulation is
based on the matrix second-order equation of motion. For control design pur-
poses, a first-order formulation which leads to a substructuring decomposition

of the structural dynamics system is required.

Let us rewrite the equation of motion (2.9) in the following first-order

form
e -l 5 (o)
Sy (&) (As) (z)  (B) o B (2.13)
yi = [Vi Wi {z:}

(C) (=)



22

where the symbol under each matrix denotes that this equation corresponds to
Eq. (2.3). Similarly, Eq. (2.10) can be rewritten as
DM| |z -K 0 z P
il = [ {e Lo
(5)

(2) 4 () (B
(2.14)

v=v wi{3}
€
where the symbol under each matrix denotes that this equation corresponds to
Eq. (2.1).

Combination of the two substructure equations in Eq. (2.13) gives the
first-order equaLt'ioinw of motion of the unassembled system in the form of
Eq. (2.2). *

Se 0 Zq A, 0 24 B, 0 Ug
[ 0 5,,] {%} B [ 0 Aﬁ] {Zﬁ} ¥ [ 0 yBﬁ] {“ﬂ}
B

) @ 4 @
fe (521
~ s 0 Cs) |2
(©)
It can be shown that the unassembled system (2.15) is a substructuring decom-

position of the assembled system (2.14). That is, (5, 4, B, C) in Eq. (2.14)
and (5, A, B, C) in Eq. (2.15) satisfy the relations in Eq. (2.4). The state

(2.15)

vector of the assembled structure and the state vectors of the substructures are

related by a coupling matrix T as

To T. 0

ia | _ |0 T, z

Iﬁ - Tg 0 T (216)
s 0 T
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2.2.1 Coupling Matrix

Physically, the coupling matrix T that relates the state vectors of the
substructures and the state vector of the assembled structure simply describes
the compatibility conditions which must be imposed on the interface degrees of
freedom. Let z; represent the physical displacement coordinates of substruc-
tures 7, and let the physical coordinates of the substructures in Figure 2.1 be
partitioned into two sets: Interior coordinates (I-set) and Boundary coordinates

(B-set), as shown in Figure 2.2.

o B
L { ]
x 5 ’pB xﬁl

Figure 2.2: Interior Coordinates and Boundary Coordinates

The displacement compatibility condition requires that xf = zj5. If the

displacement vector of the assembled structure is represented by

8

il

| 8
W We ~

8

where z® is the vector of interface degrees of freedom, then the three displace-

ment vectors Z4, T, and z are related by

(l:l I 0 0 I
z 2P 010 Ta T
o = o — B o
{zﬁ}— zk 00 1|15 —[Tﬁ]‘” (2.17)
B 0710 s
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with
100 00 I
T"_[OIO]’ Tf"[ozo}

The velocity compatibility condition requires that ¢f = zf, which leads to
o = Tut, tg = Tyt (2.18)

Combination of Egs. (2.17) and (2.18) shows that the state vectors of the
substructures and the state vector of the assembled structure are related by a

coupling matrix T as in Eq. (2.16).

In general applications, the za, 73, and z vectors do not have to be de-
scribed in physical coordinates. For instance, in the application of Component
Mode Synthesis (CMS) method, dynamics of the substructures are represented
by a set of static modes called component modes. In this case, the column vec-
tors in the T, and T matrices would be the representation of those component
modes. Even though the displacement vectors are in generalized coordinates in-
stead of physical coordinates, the compatibility condition can still be described

by Eq. (2.16).

2.3 Substructural Controller Synthesis

The derivation in this section is based on the two-component structure
in Section 2.2. The system is assumed to be subject to disturbance and obser-
vation noise. Therefore, the formulation is a stochastic case. At the end of this
section, a control design procedure called LQGSCS Algorithm is used to sum-
marize the Substructural Controller Synthesis scheme. The method proposed

can also be applied to a deterministic problem with only slight modification.
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First, let the dynamics of the assembled structure (the structure as a
whole) in Figure 2.1 be described by
Sz=Az+ Bu+ Nw
(2.19)
y=Cz+v
where input disturbance @ and output disturbance v are assumed to be uncor-
related zero-mean white noise processes. For a linear stochastic system with
incomplete measurement, optimal state feedback control design requires a state

estimator called Kalman filter to reconstruct the states for feedback. The state

estimator of a plant described by Eq. (2.19) has the form
S¢=Aq+ Bu+ F°(y — Cq) (2.20)

where F©° is determined by solving a Riccati equation. If a feedback control
scheme u = G°q is incorporated with Eq. (2.20) to control the plant, the

estimator becomes a controller in the form
S¢=(A+BG° — F°C)q+ F°
( )a y (2.21)
u = G°
where superscript o denotes optimal design. The feedback gain matrix G° is

determined by minimizing a performance index
1
J = lim =E[z7Qz + uT Ry (2.22)
t—oo 2
For structural control problem, the weighting matrix € is usually chosen to be

Q=[10{ 1?4] (2.23)

such that the first term in the performance index represents the total energy

of the structure

%zTQz = %(:I:TK::: + 2T M)
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For a purpose to be clarified later, the control weighting matrix R is chosen to

be

R= [ fa Igﬁ ] (2.24)

The above centralized design scheme for a linear optimal compensator
is well known. Now, a decentralized controller synthesis method, called the
Substructural Controller Synthesis (SCS) method, will be formulated. The de-
velopment of the Substructural Controller Synthesis method is stimulated by
the substructuring decomposition and the Component Mode Synthesis method.
The plant to be controlled is first decomposed into several substructures by
the substructuring decomposition method. Then, for each substructure a sub-
controller is designed by using linear quadratic optimal control theory. The
collection of all the subcontrollers is considered as the substructuring decom-
position of a global controller which is to be employed to control the whole
plant. Finally, a coupling scheme the same as that employed for the plant is

used to synthesize the subcontrollers.
Let the dynamic equations of the two substructures in Figure 2.1 be
represented by

S;z; = Aiz; + Biu; + Nyw; _
1= aqQ, ﬂ (225)
yi = Cizi + v,

With each substructure is associated a performance index

Ji= Jim 2B Qi+ ul R i=a, B (2:26)

with
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All the substructures are assumed to be completely controllable and observable

with the given performance weightings and the noise distribution.. For each

substructure, an LQG design can be carried out to obtain an optimal controller
in the form

5, — . (70 _ F°C\a: 0, .

e (OO e o

The above optimal controllers are designed for the substructures. Therefore,

they are called subcontrollers. Supercript o in Eq. (2.28) denotes that each

subcontroller is optimal to its corresponding substructure.

In order to to show more clearly how the concept of substructuring de-
composition is employed to assemble the subcontrollers, the collection of the
two substructures is now considered as a single system, the unassembled sys-
tem. The dynamic equation of the unassembled system can be written in a

compact form

.§'§=/’i§+1§u+ﬁw
o (2.29)
y=Cz+4+v
with
= [S. © ;[ Aq . [B. ©
=[5 2] a=[% 4] 2-[% 5
~ « 0 x | Ca O
p=[%n] =[S 4
and

St T R Y I

The distribution of the input noise is assumed to be substructurally decompos-

able, i.e., N = TTN, so that system (2.29) is a substructuring decomposition
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of system (2.19). This assumption is not a serious restriction since, in general,

distribution and intensity of the noise are uncertain quantities. Therefore, for

design purpose, a reasonable assumption can be made by control engineers.
The performance index of the unassembled system is simply the summa-

tion of the performance indexes of the substructures

J=Ju+Jp=lim %E‘[ETQE + uT Ru] (2.30)

- [0, o . [R, 0©
Q=[° Qﬁ]’ R—[O Rﬁ]

It is noted that R is the same as the control weighting R in the performance

index of the assembled system (Eq. (2.24)). The @ matrix and the state weight-

with

ing matrix Q in the performance index of the assembled system are related as
Q = TTQT. This relationship can be proved by using the relations among
the stiffness and mass matrices of the substructures and the stiffness and mass

matrices of the assembled structure as depicted in Eq. (2.12).

i K, 0 0 07[T, O
TaTOTﬁTO}OMGOO 0 T,
Tp

T =
TQT—hOTj’OTﬁT 0 0 K, O 0
0 0 0 MgJLO Tp
[ TTK.T. + TTKpTp 0
| 0 TIM.To+T5MsTs
(K 0] _
— Lo M]=Q

By using the relations z = T2z, Q = TTQT, and R = R, the performance index

of the unassembled system can be rewritten as

J = Jm o ElTTTOTs + T Rl

t—o00

lim %E[ZTQZ + u7 Ru]
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which is equal to the performance index of the assembled system. This equiva-
lence shows that with the weighting matrices @ and R chosen as in Egs. (2.23)
and (2.24), the performance index is substructurally decomposable. However,
this is only a symbolic equivalence. Because the compatibility condition 2z = Tz
is not enforced in the design of the subcontrollers, the values of J and J are,

in general, not equal.

The controller for the unassembled system is the collection of the two

subcontrollers in Eq. (2.28), which can be rewritten in a more compact form as

S§=(A+BG° - F°C)i+ F°y

. 2.31
u=G% ( )
with
= G° 0 ~ F° 0
o _ o o _ o
G —[ 0 Gg]’ F —[ 0 Fﬁo] (2.32)

It needs no proof that the unassembled controller, Eq. (2.31), is optimal for the
unassembled structure, Eq. (2.29), because the unassembled system matrices
are decoupled and each subcontroller is optimal for its corresponding substruc-
ture. Combination of Eq. (2.29) and Eq. (2.31) gives the closed-loop equation

of the unassembled system

So0lf:z A B@© p 7o -
[0 5’]{5}_[17”(3’ A+B'°_F°é]{q}+[0 ﬁwo]{v} (2.33)

The last step is to assemble the subcontrollers by using the same coupling
scheme as used for assembling the substructures. The assembled controller for
the assembled system is represented by

S¢=(A+ BG® — FeC)q + F®

2.34
u = G% (2.34)
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with

Fe =TTF°, Ge = G°T (2.35)

where superscript o denotes that the controller is not optimal but is considered
as suboptimal. The control design matrices F® and G® for the assembled
structure are obtained by assembling the optimal control design matrices F?P
and G? for the substructures by using the coupling matrix T. Under this
assembling scheme, it can be shown that the unassembled controller, Eq. (2.31)

is a substructuring decomposition of the assembled controller, Eq. (2.34).

If the assembled controller is employed to control the assembled struc-

ture, Eq. (2.19), the following closed-loop equation is obtained

5903 (ot e (G} [T 1T} 0

The unassembled closed-loop equation, Eq. (2.33) is a substructuring decom-
position of the assembled closed-loop equation, Eq. (2.36), under the coupling
matrix € ‘;')" ] Since the unassembled control system is an optimal design
for the unassembled system, the assembled control system can be considered
to be suboptimal for the assembled system if it yields a stable design. A

suboptimality study similar to the one developed along with the overlapping

decomposition method [20] is a future research topic.

The coupling matrix T plays the major role in the above formulation of
the Substructural Controller Synthesis method. To have a clearer idea about
how the compatiblity condition Z = Tz is involved in the SCS control design,

consider the following three optimization problems:
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Problem 1: o 1
Minimize J =/ E(ZTQz + uT Ru)dt
0
Subject to Sz = Az + Bu
Problem 2:
C oz © 1 rx. . Ts
Minimize J = / 5(2 Q% + u” Ru)dt
0
Subject to 3% = A3 + Bu
Problem 3: o 1
Minimize J = / 5(T0% + u Ru)dt
0
8= Az + Bu
Subject to .
' i=Tz

Problem 1 is the optimal state feedback control problem for the assembled sys-
tem. Problem 2 is the optimal state feedback control problem for the unassem-
bled system. The difference between Problem 3 and Problem 2 is that Problem
3 has one more constraint condition 7 = Tz. Hence, Problem 3 is the optimal
state feedback control problem for the unassembled system with the compat-
ibility condition enforced on the boundary degrees of freedom, which means
that Problem 3 is, in fact, exactly equivalent to Problem 1. (Also recall that,
symbolically, J is equal to J.) In the SCS design, it is Problem 2 instead of
Problem 3 that is solved to obtain the subcontrollers. Therefore, in some sense,
the SCS design method can be interpreted as simplifying the assembled optimal
control design problem (Problem 3) by throwing away some constraints (the
compatibility condition). After the optimal control law of Problem 2, u = G°3,
is obtained, the compatibility condition is, then, imposed on the feedback law

to obtain the global feedback gain matrix G®.

uw=G°% = G°(T2) = (G°T)z = G°2
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The above interpretation of the SCS method may give some helpful direction

to the suboptimality study in the future.

Closed-loop stability of a Substructural Controller Synthesis design is,
in general, not guaranteed. This is the same disadvantage that most indirect
control design methods have. Indirect control design means that the controller
is not designed based upon the exact full-order structure but is based on an
approximate model or reduced-order model. From the form of Eq. (2.36), it
is seen that the separation principle is applicable to the SCS control system.
The closed-loop poles of the assembled system are the union of the regulator
poles (eigenvalues of S!(A + BG®)) and the observer poles (eigenvalues of
S~1(A — F®C)). Therefore, stability of the assembled closed-loop system can

be checked by examining the locations of these two sets of eigenvalues.

One advantage of using Substructural Controller Synthesis to design a
controller is that an SCS controller is highly adaptable. For a structure with
varying configuration or varying mass and stiffness properties, like some space
structures, the Substructural Controller Synthesis method may be especially
efficient. The SCS controller can be updated economically by simply carrying
out redesign of subcontrollers associated with those substructures that have
changed. On the other hand, for a controller based on a centralized design
scheme, a slight change of the structure may require a full-scale redesign.
This favorable decentralized feature of the Substructural Controller Synthe-
sis method is similar to that of the Component Mode Synthesis method in the
application to model modification. It is emphasized again that the dynamic
models of the substructures do not have to be exact models. They can be ap-

proximate (reduced-order) models obtained by a Component Mode Synthesis
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method or any existing model reduction method, e.g., the methods reviewed
in Chapter 3. If the subcontroller is designed based on an approximate sub-
structural model, then it is not optimal to the substructure. Nevertheless, the

aforementioned decentralized feature is still true.

The following algorithm summarizes the Substructural Controller Syn-

thesis scheme, with the LQG optimal control theory as the design basis.

Algorithm 2.1 (LQGSCS Algorithm)

(1.) Set up the LQG problem for the assembled structure.
Sz=Az+ Bu+ Nw
y=Cz+4v

Minimize J = tlirglo E[27Qz + u” Ru]

(2.) Construct a substructuring decomposition of the LQG problem in (1).

§3=A34 Bu+ Nw
y

Minimize J = lim E[Z7Q% + uT Ru]

where

S=TT§F A=TTif B=17B  C=0F

N=TTN, Q=TTQT =Tz J=J
Due to the decoupling of the substructuring decomposition, the unassembled
LQG problem can be split into v substructure-level LQG problems:

S;%; = Aiz; + Biu; + Niw;

y; = Cizi + v i=1,2, ..., v

Minimize J; = lim E[zF Qizi + ul Riwi]
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(3.) Carry out an LQG design to obtain an optimal subcontroller for each sub-
structure in (2).
Sigi = (Ai + BiGY — F2Ci)gi + FPyi .
1=1,2, ..., v
u; = Gg;

where F° and G? are obtained by solving Riccati equations.

(4.) By using the coupling matriz T, assemble all the subcontrollers to obtain a
global controller.
S§g=(A+ BG® — F®C)q+ F®%y
u= G%g

where G = GOT, F® = TTEFC with G° = diag| G? ] and F° = diag| F? |.

(5) Calculate the eigenvalues of S™ (A + BG®) and S7(A — F®C) to check
closed-loop stability.

A similar algorithm can be developed for the deterministic case. The
only difference between the LQRSCS algorithm (for the deterministic case)
and the LQGSCS algorithm (for the stochastic case) is that a pole assignment

scheme is required to determine the F° matrices in the former case.

2.4 Examples

In this section, two plane truss structure examples are used to demon-
strate the applicability of the Substructural Controller Synthesis method. The
first example has two identical substructures and almost-colocated sensor and

actuator allocations. The second example is a more general case.
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2.4.1 Identical Substructures With Almost-Colocated Sensor And

Actuator Allocations

The truss structure considered is depicted in Figure 2.3, which consists
of six bays and has twenty degrees-of-freedom. Two force actuators and two
displacement sensors are allocated symmetrically at f and d, respectively. The
actuators are contaminated by disturbances with intensity 103, The sensors
are contaminated by noises with intensity 10~'2. These levels of noise intensi-
ties are chosen arbitrarily just for the purpose of example study, and are not
justified by the experience of any real case. (In Ref. [45], there is an example
with input noise intensity 10~ and output noise intensity 10-1%.) All distur-
bances are assumed to be uncorrelated zero-mean white noise processes. The
mass and stiffness matrices for the structure are obtained by the finite element
method. The damping matrix is chosen to be 1/1000 of the stiffness matrix.
The eigenvalues of the open-loop system have damping ratios ranging from
0.05% to 1.5%. The structure is divided into two substructures as shown in

Figure 2.3.

SCS control design has been carried out and cdmpared with the full-order
optimal controller for five different cases. Conditions, assumptions, formula-

tions, and results for the five cases studied are summarized in the following.
Case 1: (Two-input and two-output)

For this case, the two substructures are identical due to symmetry.
Therefore, only one substructural level control design need be carried out. The
other subcontroller can be obtained by using symmetry. The results are shown

in Table 2.1 and Figure 2.5, in which R is the weighting of control cost in the
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Figure 2.3: Details of the plane truss for the SCS design example (identical
substructures and colocated sensor/actuator allocations)

performance index. It is seen that the SCS controller has a near-optimal per-
formance. The performance value of the SCS controller is less than 4% higher
than the performance value of the optimal controller. The substructures and

subcontrollers for this case are symbolically represented by the following equa-

tions. 7
Left substructure Right substructure
S1z1 = A1z + Byuy + By Sy23 = Agzy + Byup + By,
n=Cian+u y2 = Caza + 13
Left subcontroller Right subcontroller
S1g1= (A1 + BiGY —FPC)g1 + FPy1 Sada=(A2 + B,G3 —FPCy)gs + FP
u; = GYq1 uz = G g2

Case 2: (Single-input and two-output)

Assume that the actuator on the right substructure has malfunctioned.
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In this case, the right substructure is, in fact, not controllable since there
is no actuator on it. However, the right sensor is still functioning and can
collect information about the state of the right substructure. Therefore, an
observer for the right substructure is designed and is called the generalized
subcontroller for the right substructure, although there is really no control law
involved. The design of the left subconfroller is the same as that for Case 1. The
global controller is obtained by assembling the right generalized subcontroller
and the left subcontroller. Comparisons of the SCS controller and the full-
optimal controller for this case are summarized by Table 2.2 and Figure 2.6.
Again, it is seen that the SCS controller is near-optimal. The substructures

and subcontrollers for this case are symbolically represented by the following

equations.
Left substructure Right substructure
S1zy = A1z + Byuy + Bym,y Sa29 = Azzy + By,
y1=Ciz1+ v y2 = Caza + v,
Left subcontroller Right generalized subcontroller

Siir = (A + BiGS = FPCa + FRyr Sade = (A2 = FYCa)a + Fy
u = G g
Case 3: (Single-input and single-output)

Assume that both the actuator and sensor on the right substructure have
malfunctioned. In this case, the right substructure is neither controllable nor
observable. The generalized subcontroller for the right substructure is defined
by the state equation that describes the right substructure itself. The results

of this case are summarized by Table 2.3 and Figure 2.7, which show that the

SCS controller is near-optimal. The substructures and subcontrollers for this
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case are symbolically represented by the following equations.

Left substructure Right substructure

8121 = A1z1 + Biuy + By S22y = Azzg

y=Ciz1+u

Left subcontroller Right generalized subcontroller
Sigr = (A1 + BiGY — FPC)au + Fow S2G2 = A2q2

Uy = G?Ql

Case 4: (Two-input and single-output)

Assume that the right sensor has malfunctioned. In this case, the right
substructure is not observable. The generalized subcontroller for the right
substructure is defined to be a full-state feedback controller, although there is
really no state estimator available. Comparisons of the SCS controller and the
full-order optimal controller are summarized by Table 2.4 and Figure 2.8. It
is seen that the performance of the SCS controller for this case is not so good
as that for the previous three cases. The substructures and subcontrollers for

this case are symbolically represented by the following equations.

Left substructure Right substructure

S$1z21 = Avzr + Byuy + By Sa2; = Az + Baug + Byw,

y1 = Crz1 + 01

Left subcontroller Right generalized subcontroller
Sig1 = (A1 + BiGY — FPC)a + Fy S242 = (A2 + B2G?)q,

Uy = G?‘h Uz = Gng

Case 5: (Two-input and single-output, right substructure free of noise)

We suspect that the poor performance of the SCS controller in Case

4 is due to the fact that there is not an observer to filter the noise on the
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right substructure. Therefore, as another case for study, we consider the same
actuator/sensor configuration as that of Case 4, but assume that the right
substructure is free of disturbance. The results are summarized by Table 2.5
and Figure 2.9. As we can see, the SCS controller for this case has a near-
optimal performance. The substructures and subcontrollers for this case are

symbolically represented by the following equation.

Left substructure Right substructure

5121 = A1z + Byuy + Byoy Sz23 = Azze + Byu,
y1=Ciznt v

Left subcontroller o Right generalized subcontroller
S141 = (A1 + BiGY — FPCh)a + 'y S22 = (A2 + B:G3) s

u = Goqy : u; = G52

From the results of the above five cases, it is seen that the performance
of the SCS controller is, in general, near-optimal. The only case that the
SCS controller exhibited a poor performance is Case 4, in which the right
substructure is subject to disturbance but has no output measurement as a
feedback to filter the noise. A conclusion from the study of Case 4 and Case 5 is
that an estimator is required for each substructure subject to noise disturbance

in order to obtain a near-optimal SCS controller.

2.4.2 Unsymmetric Case

The second example is a more general case. The structure considered is
a sixteen degree-of-freedom plane truss structure as shown in Figure 2.4. The
structure is decomposed into two substructures in order to perform the SCS

design. There are two sensors located on bar elements denoted by s and two
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actuators located on bar elements denoted by a. The sensors are strain gauges
that can measure the strains in the bar elements. The actuators are load cells
that can control the relative displacements of the two ends of the bar elements.
No attempt was made to optimize the locations of sensors aﬂd actuators. It
is assumed that the actuators are contaminated by disturbances with intensity
10~3 and the sensors are contaminated by noises with intensity 107°. The
damping matrix is equal to 1/1000 of the stiffness matrix. The corresponding

system damping factors range from 0.07% to 1.0%.

a: actuator §: sensor

$

Im

/771117

/i

|< 60e5=300
EA-1.E+5, pA=1.0

77117
/1771777

Figure 2.4: Details of the plane truss for the SCS design example (unsymmetric
case)

The results are summarized in Table 2.6 and Figure 2.10. It is seen that
the performance curve of the SCS controller for this example is not as close to

the optimal performance curve as that for the symmetric case in the previous
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subsection. However, the performance values in Table 2.6 still show that the
SCS controller is near-optimal. It is also noted that for large control bandwidth

(small R), the SCS controller tends to deviate further from the optimal one.

Although further examples must be examined before any general conclu-
sions can be reached about the efficiency of the proposed SCS controller design
procedure, the results of the above two examples are very encouraging. Exam-
ples which apply SCS design to reduced-order substructure models definitely

must be considered.
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Table 2.1: Performance values of Case 1

45

R= 0.01 0.05 0.1 0.5 1 5 10
Optimal 1.1737E-4|1.7796E-4]2.1445E-4{3.3920E-4 |4.1689E-4 6.7621E-418.3436E-4
SCS method|1.2155E-4|1.8168E-4|2.1856E-4 | 3.4522E-4 4.9385E-4 |6.8522E-4|8.4451E-4
Difference 3.6% 2.1% 1.9% 1.7% 1.7% 1.3% 1.2%

Table 2.2: Performance values of Case 2

R= 0.01 0.05 0.1 0.5 1 5 10
Optimal 7.6963E-511.1298E-4|1.3449E-4|2.1154E-4[2.5916E-4 |4.1879E-4 5.1610E-4
SCS method |7.9660E-5{1.1442E-4 |1.3654E-4 |2.1342E-4|2.6109E-4 4.2213E-415.2082E-4
Difference 3.5% 1.9% 1.5% 0.89% 0.74% 0.79% 0.91%

Table 2.3: Performance values of Case 3

R= 0.01 0.05 0.1 0.5 1 5 10
Optimal 7.7358E-511.1255E-4{1.3472E-4 [ 2.1168E-4 | 2.5927E-4 * 5.1618E-4
SCS method |7.9850E-5|1.1450E-4|1.3659E-4 | 2.1344E-4|2.6112E-4 4.2213E-4|5.2082E-4
Difference 3.2% 1.7% 1.4% 0.83% 0.71% * 0.90%

+ CTRL-C encountered difficulty in solving Lyapunov equation for full-order optimal

design.
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R= 0.01 0.05 0.1 0.5 1 5 10
Optimal 1.37492E-4|1.9240E-4{2.2709E-4 | 3.4887E-4 | 4.2544E-4 6.8283E-418.4029FE-4
SCS method |5.3709E-4 |6.6359E-4|7.0535E-4 | 7.9789E-4 8.4867E-411.0293E-3|1.1520E-3
Difference 291% 245% 210% 129% 99% 51% 37%

Table 2.5: Performance values of Case 5

R= 0.01 0.05 0.1 0.5 1 5 10
Optimal 5.9433E-5|8.9437E-5|1.0763E-4|1.6989E-4 | 2.0863E-4 3.3822E-4{4.1726E-4
SCS method |6.1968E-5]9.1607E-5|1.0989E-4 1.7296E-4(2.1219E-4{3.4275E-3|1.1520E-3
Difference 4.3% 2.4% 2.1% 1.8% 1.7% 1.3% 1.2%
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Table 2.6: Comparison of full-order optimal controller and SCS controller

Ju Je J
(Control cost) | (Regulation cost) | (Performance value)
R=0.0001 OPT 1.6610E-2 4.5665E-4 4.5831E-4
SCS 8.1847E-3 5.4403E-4 5.4485E-4
Difference 19%
R=0.001 OPT 4.4901E-3 4.6026E-4 4.6475E-4
SCS 3.2463E-3 5.4472E-4 5.4800E-4
Difference 18%
R=0.01 OPT 1.6198E-3 4.6930E-4 4.8550E-4
SCS 1.3719E-3 5.4458E-4 5.5830E-4
Difference 15%
R=0.05 OPT 6.8176E-4 4.9123E-4 5.2532E-4
SCS 5.6477E-4 5.5462E-4 5.8286E-4
Difference 11%
R=0.1 OPT 4.1564E-4 5.1007E-4 5.5163E-4
SCS 3.4963E-4 5.6574E-4 6.0070E-4
Difference 9%
R=0.5 OPT 8.8571E-5 5.8016E-4 6.2444E-4
SCS 7.8312E-5 6.1235E-4 6.5151E-4
Difference 4%
R=1.0 OPT 3.6711E-5 6.1606E-4 6.5277E-4
SCS 3.3248E-5 6.3803E-4 6.7128E-4
Difference 3%
R=5.0 OPT 2.8869E-6 6.7877E-4 6.9320E-4
SCS 2.7541E-6 6.8520E-4 6.9897E-4
Difference 0.8%
R=10.0 OPT 8.2542E-7 6.9266E-4 7.0091E-4
SCS 8.0024E-7 6.9609E-4 7.0409E-4
Difference 0.4%
R=100.0 OPT 9.5865E-9 7.0794E-4 7.0900E-4
SCS 9.5056E-9 7.0831E-4 7.0926E-4
Difference 0.05%







Chapter 3

MODEL REDUCTION OF FLEXIBLE
STRUCTURES

A central issue in the active control of flexible structures is to derive a
high-fidelity mathematical model to be used as a basis for dynamic analysis
and control design. Although a flexible structure is by nature a distributed-
parameter system, for analysis purposes it can be modelled as a finite dimension
system by using the Finite Element Method or other discretization approaches.
However, for a complex structure, e.g., large space structure like the Space
Station Freedom, the Finite Element model usually attains thousands, or tens
of thousands of degrees of freedom, which is a major computational task for
dynamic analysis not to mention too large a scale for control design. Therefore,
for the purposes of efficient computation and easy control implementation,
model reduction is an inevitable procedure for dynamic analysis and control
design of large space structures. Another fact about space structures is that
most space structures will be built with light weight components and will thus

tend to be very flexible with closely-spaced frequencies and very light damping.

In this chapter, several frequently used model reduction methods are
reviewed. Among a myriad of the existing model reduction methods for struc-
tural dynamics systems, modal truncation may be the most popular approach.
Modal representation has many advantages: modal frequencies represent reso-

nances of the structure, equations of motion are uncoupled implying saving of
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computation time, and modal data can be identified and validated by vibration
test. However, selection of modes to be retained in the reduced model may not
be an easy task. The simplest approach would be to include all modes within
the frequency range of interest. For a large space structure with closely-spaced
frequencies, this simplest approach may produce a reduced model whose size

is still too large to handle.

An efficient modal truncation criterion is based on balanced singular
values. It is shown in Refs. [14] and [23] that if frequencies are sufficiently
separated and modal damping is very small, then modal representation of a
structural dynamics system is approximately balanced. Therefore, approxi-
mate balanced singular values can be calculated by using modal parameters
and balanced model reduction can be performed on modal coordinates. Other
than singular values, Kabamba introduced an L? model reduction basis called
balanced gain[24]. In this chapter, an approximate balanced gain for a struc-
tural dynamics system is expressed in terms of modal parameters by using the
balanced form derived in Ref. [14]. The balanced gain approach can produce

more accurate reduced models in the L? sense.

In addition to normal modes, there are other Ritz vectors superposition
methods for dynamic analysis of structures. The authors presented a Krylov
model reduction algorithm in Refs. [36, 37]. Krylov vectors are system static
modes generated by a recurrence procedure. In Refs. [30] and [42], similar
Ritz vector approaches are proposed for structural dynamic analysis. Recently,
several numerical experiments have shown that by augmenting a modal basis

with some Ritz vectors, fidelity of the reduced model can be substantially
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improved[25]. Such approach will be referred to in this chapter as the mixed-

mode method.

This chapter is organized as follows. The Model Reduction Section briefly
reviews modal truncation, balanced model reduction, balanced gain approach,
Krylov model reduction, and Ritz vectors and mixed-mode method. Then, a
plane truss structure with closely-spaced frequencies and light modal damp-
ing is used to compare different reduced-order models. Open-loop comparison
includes the L? error norm of the impulse response function and approxima-
tion of the output frequency response function. The control design comparison
includes closed-loop stability and control performance. The material in this
chapter was presented in an international conference on dynamics of flexible

structures in space[8].

3.1 Model Reduction

In this section, several frequently used model reduction methods for

structural dynamics systems are briefly reviewed.

3.1.1 Modal Truncation

Let a structural dynamics system be described by the following input-

output equations

Mi+ Dz + Kz = Pu r€R, ue R (3.1)
y=Vz+ Wz y € R" ’

where M, D, and K are the system mass, damping, and stiffness matrices

respectively; P is the force distribution matrix; and V and W are the displace-

ment and velocity sensor distribution matrices respectively. If the damping
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matrix D is proportional, then the above structure model can be transformed
into standard modal form as follows:

i+ 2ZAj + A’ = T Pu

y = Vdy + Wi (3.2)

where @ is the matrix of mode shapes, A = diag[\;] is the diagonal matrix of
modal frequencies, and Z = diag[(;] is the diagonal matrix of modal damping
factors. A simple and frequently used approach to structure model reduction is
modal truncation, which retains dominant normal modes in the reduced model.
Selection of dominant modes, however, is not as easy a task as it seems to be
and requires experienced engineering judgement. The simplest approach is to

retain all the modes within the frequency range of interest.

3.1.2 Balanced Reduction

For an asymptotically stable, linear, time-invariant system represented

by
z=Az+ Bu
y=Cxz (3.3)
the controllability and observability grammians are solutions of the two Lya-

punov equations
AW, 4+ W.AT + BBT =0 (3.4)
ATW,+ W,A+CTC =0 )
Neither grammian is invariant under similarity transformation. It is shown in
Ref. [29] that there always exists an equivalent system for which the grammians
are diagonal and equal, W, =W, =¥ = diag[o;]. The quantities o;’s are called

second-order modes or singular values of the system. A system representation

with equal and diagonal grammians is called internally balanced. Balanced
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model reduction deletes system state variables associated with the smallest
singular values. It is interpreted that those states associated with small sin-
gular values require large effort to control and contribute little to the system
output. In this sense, balanced model reduction retains the most controllable
and observable part of the system in the reduced model. Enns showed in Ref.

[11] that there exists an co-norm frequency error bound

n

| H(jw) — H:(jw) o< 2 D 0 r<n (3.5)
i=r+1

where H(jw) = C(jwI — A)™'B is the transfer function matrix of the full-order
model and H,(jw) is the transfer function matrix of the r-th order reduced

model obtained by retaining the first r singular values.

Recently, Gregory[14] and Jonckheere[23] independently showed that
for a flexible structure described by the modal equation (3.2), if the system
damping ratios are sufficiently small ({; < 1) and the system natural frequen-
cies are well separated (The criterion on separation of frequencies is given by
maz((i, ¢ maz(Xi, A;)/|xi — A;] < 1.), then the modal model is approximately
balanced. The approximate balanced singular value_s can be expressed in terms

of the modal parameters as follows

_ y/pipf (o] i + Mwlw)

where p; is the i-th row of ®T P matrix, and v; and w; are the i-th columns of the

(3.6)

V® and W® matrices respectively. It is shown in Ref. [4] that the approximate
balanced singular value in Eq. (3.6) is equal to one-half of the peak magnitude
of the transfer function at resonant frequencies. Therefore, modal truncation
based on singular values preserves modes with largest peak magnitude in the

transfer function. .
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3.1.3 Balanced Gains

Assume that the system described by Eq. (3.3) is internally balanced and let
b; denote the i-th row of B matrix and ¢; denote the ¢-th column of C' matrix.
Balanced gain is defined by Kabamba in Ref. [24] as g; = bTb; = cicl. (b7 =
c;cT is a property of the balanced realization and can be proved easily by using
Egs. (3.4) and W, = W, = L.) Kabamba showed that singular values do not
give enough information for model reduction in the L? sense. By defining the

following inner product and norm of the impulse response function matrix

(hy, ha) = tr /0 " hi(ORT(2) di]

(3.7
| & llza= (b1, h2)'/?
it can be shown that for an internally balanced system
| B =k 2 2 (O oiga) 2= (3 aig)'/? (3.8)
=1 i=r+1

where h and &, are the impulse response function matrices of the full-order
model and the reduced-order model respectively. From Eq. (3.8), we see that
it is the product o;g; instead of o; alone that serves as a truncation basis for

L? model reduction.

For structural dynamics systems, the balanced gain for mode i can be
obtained by combining the definition of Kabamba([24] and the derivation of
Gregory[14].

\/pipT (vF v + Mwlw)
gi = "
3

Therefore, according to Eq. (3.8), an L? norm modal truncation for structural

(3.9)

dynamics systems should be based on

oigi = pip? (v v; + Mwfw)
e 44 A2

(3.10)
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It is noted that the above modal truncation basis is exactly the same as Skel-
ton’s modal cost analysis truncation basis derived based on the contribution
of each mode to the output energy for an impulse input[4, 34]). For modal
cost analysis, if a structure’s natural frequencies are widely-spaced and modal
damping approaches zero, the total cost can be decomposed into a sum of

modal costs, which are equal to o;g; in Eq. (3.10).

3.1.4 Krylov Model Reduction

Su and Craig proposed in Refs. [36, 37] a Krylov model reduction algorithm for
structural dynamics systems. Basically, Krylov model reduction is an extension
of the Lanczos method in Ref. [30] to structural control problems. A Krylov
reduced model is obtained by projecting the system dynamic equation onto a
subspace called Krylov subspace, which is spanned by a set of vectors called a
Krylov vectors. Krylov vectors are generated by a simple recurrence procedure.

For undamped structural dynamics systems, the Krylov procedure is
Qi+: = K'MQ, (3.11)

For damped systems, the Krylov procedure is

d _K-1p K- d
()5 )(g) e

With starting vectors appropriately chosen as the system’s static deflection
due to force and semsor distribution matrices, the Krylov vectors generated
by the above procedures can form a basis to produce reduced-order mod-
els with parameter-matching properties. Parameter-matching methods con-

stitute a class of efficient model reduction methods for linear systems(41].
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Krylov model reduction is essentially a second-order formulation of parameter-
matching model reduction method for structural dynamics systems. A Krylov
reduced model matches a set of system parameters called low-frequency mo-
ments. For a linear time-invariant system described by Eq. (3.3), low-frequency
moments are defined by CA~*B, ¢ =1, 2, ..., which are coefficient matrices
in the Taylor’s expansion series of system transfer function H(jw). By match-
ing low-frequency moments, the reduced-order model produces accurate steady
state step input response and approximates the lower natural frequencies of
the full-order model. Another interesting feature about Krylov reduced mod-
els, as indicated in Ref. [36], is that for structural control design, the Krylov
formulation can eliminate control and observation spillovers, but manifests dy-
namic spillover terms. This is the basic difference between the Krylov reduction

method and the traditional modal truncation methods.

3.1.5 Ritz Vectors and Mixed-Mode Method

Although modal truncation may be the most frequently used reduction
method, as stated in Ref. [42] there exists no proof that the use of normal
modes in mode superposition analysis is better than any other set of Ritz
vectors. (Ritz vector is a general terminology for assumed mode or static
mode.) On the other hand, it is also true that one cannot assure that a basis
formed solely by Ritz vectors can serve as a better truncation basis than normal
modes. Recently, many numerical experiments have shown that by augmenting
the normal mode basis with some suitably chosen static modes or Ritz vectors,
accuracy of dynamic analysis usually can be substantially improved [5, 25].

Static modes are a system’s deflection shapes associated with imposed force
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distribution vectors. Krylov vectors and Lanczos vectors can all be considered
to be system static modes. By using an rms error estimate, Kline provided
several examples in Ref. [25] to show that the addition of static modes to the
modal basis can indeed enhance fidelity of reduced-order models for analysis
of structural response under the action of time-dependent forcing vectors. The
addition of some static modes to the normal mode basis to perform model

reduction will be called a mixed-mode method.

3.2 Plane Truss Example

A plane truss structure with closely-spaced frequencies and very small
modal damping is used to compare the model reduction methods reviewed in
the previous section. Figure 3.1 shows the structure’s geometry and material
properties, which are chosen to be nondimensional and such that the plane
truss represents a very flexible structure with closely-spaced frequencies. The
structure has twenty-four degrees of freedom. The damping matrix is chosen to
be proportional with 0.1% damping ratio for all modes. The structure’s natural
frequencies, listed in Table 3.1, range from 1.8677(Rad/sec) to 12.992(Rad/sec).
The frequency response function in Figure 3.2 shows that the system natural
frequencies are clustered. There is a force actuator applied at “f” and a dis-
placement sensor located at “a”. Since the assumption of sufficiently separated
frequencies is violated for this example ((AA/) is 0.1 for modes 1 and 2, 0.7 for
modes 8 and 9, and 0.15 for modes 17 and 18, which are not very much smaller
than 1), the modal representation cannot be considered as approximately inter-
nally balanced. However, for analysis and design purpose, we can still proceed

with modal truncation by retaining only modes with largest singular values or
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balanced gains. The approximate balanced singular value and balanced gain for
each mode calculated by using Eq. (3.7) and Eq. (3.10) respectively are sum-
marized in Table 3.2. The balanced reduction criterion requires that o; > 041
<o that the model can be truncated at o;. For this example, there is not an ob-
vious cut-off point, which means that it is necessary to preserve a large portion

of the system modes in order to produce a high-fidelity reduced-order model.

3.2.1 Open-Loop Comparison

First, error norms of the impulse response function matrix are compared
for different reduced-order models. Let (A, B, C) denote the full-order system
model and let (A,, B,, C,) denote the reduced-order system model. The im-
pulse response function matrices for the full-order model and the reduced-order
model are A(t) = CeA'B and h,(t) = C,e* ' B, respectively. An easy way to
calculate the error norm of the impulse response function matrix is by solv-
ing Lyapunov equations. Let the inner product and norm of impulse response
function matrix be defined by Egs. (3.7). Then, the difference between h and

h, can be calculated by
| &=k, ||2= tr(BTW,B) + tr(BTW,.B,) — 2BTXB

where W, and W, are observability grammians of the full-order and reduced-

order models respectively, and X is the solution of
ATX + XA+ CIC=0

The error norm is defined by

[ 2= A llr2
Err = —mm——
Al
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The results of the impulse response comparison are summarized in Table
3.3. As expected, the balanced gain approach produces reduced-order models
that approximate the impulse response better than any other truncation cri-
terion. Modal truncation based on A;, which means by retaining the lowest
frequency modes, shows that for an 18th-order model, which contains three-
fourth of the system’s modes, there is still a 15% error. For this example,
Krylov reduced models are poor in tracking the impulse response. The mixed-
mode reduced model in Table 3.3 is obtained by augmenting the balanced gain
modal basis with two Krylov modes. It is seen that the inclusion of Krylov
modes in the modal basis for model reduction does not improve accuracy in

simulating impulse response.

Next, we compared the system’s output frequency response function for
different reduced-order models. The results are summarized by Figures 3.3-3.8.
Figures 3.4 and 3.7 show that Krylov reduced models can approximate very well
the frequency response function in the lower frequency range. This is because a
Krylov reduced model matches low-frequency moments of the full-order model,
which causes excellent approximation of H(jw) in the neighborhood of w = 0.
Figures 3.3 and 3.6 indicate that the balanced gain approach simply picks up
those modes that contribute the most to the L? output energy norm. Although
peaks of the dominant modes are exactly reproduced, there are static gain errors
in the lower frequency range for balanced gain reduced models. To improve the
approximation in the lower frequency range, we can include two Krylov modes
in the balanced gain modal basis. The reduced model, then, matches the first
two low-frequency moments CA™'B and C A~%B, which can produce exact

steady state step input response H(0) as shown by Figures 3.5 and 3.8.
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3.2.2 Control Design

Assume that the actuator is subject to zero-mean white noise with inten-
sity 1 and the sensor is contaminated by a zero-mean white noise disturbance
with intensity 10~°. Based on each reduced-order model, an LQG control de-

sign can be carried out to minimize the performance index

J = = lim E[¢TM, 2, + 2T K.z, + pu”u]

1

2 t—oo
im which the first two terms represent the total energy of the reduced system
and the third term represents the control cost. The controller designed based on
reduced model, then, is applied to control the full-order structure. A positive
scalar p is used to adjust the relative weighting of the regulation cost and control
cost penalties. Overall controller authority, actuator mean-square force levels,
and controller bandwidth are all inversely proportional to p. The value of p

was varied from 0.01 to 1000 to study the closed-loop stability and controller

performance.

The results are summarized by Table 3.4 and Figure 3.9. The stability
comparison in Table 3.4 shows that for this example, modal truncation by re-
taining the lowest frequency modes yields more stable closed-loop designs than
other methods. Krylov reduced model appears to be the worst in the stability
comparison. This contradicts the results of another example in Ref. [37], in
which control design based on Krylov reduced models indicates much better
stability property and performance than controllers designed based on normal
mode reduced models. Modal truncation based on singular values and bal-
anced gains, and based on the mixed-mode method are about equal in yielding

a stable design. Figure 3.9 compares the performance of control designs based
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on different 8th-order reduced models. Modal truncation based on lowest fre-
quency modes has the best performance while Krylov-based control design is
the worst. The balanced gain modal basis method and the mixed-mode method

exhibit comparable performance.
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Table 3.1: Natural frequencies of plane truss structure

Mode
No.

Frequency

(Rad/sec)

Mode Frequency
(Rad/sec)

No.

Mode
No.

Frequency
(Rad/sec)

00 -1 O O W BN =

1.8677
1.8861
1.9849
2.8460
3.7640
4.0700
4.9611
5.1206

9
10
11
12
13
14
15
16

5.1279
5.9550
6.0958
6.5133
6.7425
6.9224
7.7759
8.8845

17
18
19
20
21
22
23
24

8.9762
9.0349
9.1429
9.4214
11.069
11.558
12.838
12.992 |

Table 3.2: Singular values and balanced gains

" Singular Value

Balanced Gain

Mode

ag;

Mode

ag;

Mode

igi

Mode

0igi

o0 Ot BN) =

8o
<

14
19
12
10

1.0938E-1
8.3539E-2
7.5481E-2
7.4065E—2
6.1759E—2
3.7187E-2
3.3461E-2
3.2379E-2
3.0609E-2
2.9923E-2
2.8100E-2
2.1470E-2

16
17
11
15
24
23

4
13
21

9
22
18

1.9229E-2
1.9080E—2
1.8951E-2
1.1891E-2
1.1881E—-2
1.1126E-2
6.8545E—3
5.4472E-3
3.3258E-3
1.1986E—3
8.2749E—4
6.1067TE—4

6
)
8
1
20
2
19
14
12
7
10
16

1.9477E—4
8.2592E-5
7.8123E-5
5.2137TE-5
5.2115E-5
4.2984E-5
3.4265E—-5
2.9030E-5
2.3329E-5
2.2218E-5
1.8808E—5
1.3140E-5

17
11
24
23
15

3
13

4
21
22

9
18

1.3072E-5
8.7570E—6
7.3362E—6
6.3562E—6
4.3978E—6
3.6599E—-6
8.0027E—7
5.3487E-17
4.8973E-7
3.1657TE—8
2.9468E-8
1.3477TE-8




Table 3.3: Error norms of impulse response function

Mixed Modes*

Model| Based on A; | Based on o; | Based on o;g; | Krylov Modes
Order

1 9.2807E-1 | 7.1434E-1 7.1434E-1 1.0082E+0 —

2 8.6593E—~1 | 6.4331E-1 5.9309E-1 1.2159E+0 —

3 8.6056E—~1 | 5.8027E-1 4.8189E-1 1.0367E+0 8.9475E—1

4 8.5978E-1 | 4.5903E-1 4.1087E-1 5.6607E40 6.7110E-1

5 7.3878E—-1 | 3.4782E-1 3.3495E—1 1.0683E+0 8.0917E-1

6 4.5287TE—1 | 2.7191E-1 2.7191E-1 4.1616E+0 7.7403E—1

7 4.2073E-1 | 2.3928E-1 2.2124E-1 1.0384E+0 9.1157E-1

8 3.0904E—~1 | 1.9669E—-1 1.7866E—1 2.2132E+0 3.2963E-1

9 3.0809E—1 | 1.4603E-1 1.4454E-1 2.1238E+40 3.7733E-1
10 2.8115E—-1 | 1.1190E-1 1.1190E-1 2.5662E4+0 4.9722E-1
11 2.6834E—1 | 8.4013E-2 8.4013E-2 2.6191E+0 6.5646E—1
12 2.3406E—1 | 7.8640E-2 6.6106E—2 2.5230E+0 3.9786E—1
13 2.3296E—1 | 6.0734E-2 4.7029E—2 1.6895E+0 2.3394E—-1
14 1.9036E—1 | 4.1657E-2 3.4170E-2 1.3701E+0 1.2998E—1
15 1.8390E—1 | 2.8797TE-2 2.3947TE-2 1.3418E+0 1.5327E-1
16 1.6622E—-1 | 2.2341E-2 1.4617E-2 6.4551E-1 8.9277E-2
17 1.4654E—1 | 1.2118E-2 8.1601E-3 8.2138E-1 1.0390E—1
18 1.4657E-1 | 2.7875E-3 2.7875E-3 7.3783E-1 5.7178E—2
19 9.6817E-2 | 2.0024E-3 1.6128E-3 7.0348E—1 3.2111E-2
20 2.0318E-2 | 8.2761E—4 8.2761E-4 5.9209E-1 4.9123E-3
21 1.9600E-2 | 1.0952E-—4 1.0952E—4 6.2487E-1 2.7161E-3
22 1.9553E—-2 | 6.6258E-5 6.3041E-5 5.5446E-1 6.7804E—4
23 1.0769E—2 | 1.9784E-5 1.9784E-5 1.6457E-1 2.7408E—4

*Mixed-Modes: 2 K;ylov modes plﬁsr balanced gain modal basis.
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Table 3.4: Stability of controllers

Controller [p=0.01 01 1 10 100 1000
SV8 U U U S S S
SV10 U U U S S S
SVi2 U U U S S S
SVi4 U U U S S S
BG8 U U U U S S
BG10 U U U S S S
BG12 U U U U S S
BG14 U U S S S S
MMS8 U U U S S S
MM10 U U U U S S
MM12 U U S S S S
MM14 U U U S S S
KRYS8 U U U U S S
KRY10 U U U U S S
KRY12 U U U U S S
KRY14 U U U S S S
NORS U U S S S S
NOR10 U U S S S S
NOR12 U U S S S S
NOR14 U U S 5 S S
U: Closed-loop system is unstable. S: Stable.

SV: Singular value modal basis.

BG: Balanced gain modal basis.

MM: 2Krylov modes plus balanced gain modal basis.
KRY: Krylov reduced model.

NOR: Lowest normal mode basis.
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Chapter 4

CONTROLLER REDUCTION

Conventional Linear Quadratic Gaussian (LQG) controller design usually
leads to a controller with an order about the same as the order of the original
system to be controlled. A controller design based on the H* theory may be of
much higher order than the plant. For large scale systems it is, in many cases,
necessary to reduce the controller to a smaller order for the purpose of easy
implementation and economical computation. The reduced-order controller,
however, should not affect the closed-loop stability or degrade the performance

too much.

In recent years there has been extensive research devoted to the topic
of controller reduction. Among a myriad of controller reduction methods, one
class of methods based on the state-space formulation can be called projection
methods [9, 22, 45]. The controller system equation is usually first projected,
or transformed, to new coordinates in which the contribution of each controller
state to the overall closed-loop control performance can be meaningfully defined
and evaluated. Then, the reduction strategy is to eliminate those states with
the least contribution to the performance. This type of approach is referred as
Linear-Quadratic Reduction in Ref. [13] because the reduced-order controller

is obtained by performing reduction to the full-order LQG controller.

The major task in LQG reduction is to find an appropriate projection
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subspace for controller system transformation and reduction. Since controller
reduction is a closed-loop problem, it is required to take not only the controller
system itself but also the closed-loop system as a whole into consideration in
the search for a truncation basis. Therefore, as it is usually addressed in the
literature, a controller reduction problem is different from a model order re-
duction problem. The component cost analysis (CCA) method of Skelton et
al.[45] performs reduction based upon the participation of the controller states
to a quadratic closed-loop performance metric. The balanced controller reduc-
tion method [22] balances the two algebraic Riccati equations which arise in
the LQG design. In Ref. [9] there are three more balanced controller reduction
algorithms which balance Lyapunov equations involving system and controller
matrices. All these methods are projection methods with the choice of pro-
jection subspace more or less based upon closed-loop considerations. However,
despite the fact that the strategy for controller reduction is somewhat different
from that of model order reduction, it is still true that if a reduced-order con-
troller can approximate the input-output characteristics of the full-order LQG
" controller well, then it should also have a fairly good closed-loop performance.
Therefore, an efficient model order reduction scheme might very well be applied

to controller reduction.

The controller reduction algorithm presented in this chapter can be con-
sidered as a model reduction method applied to controller reduction. The pro-
jection subspace used is a Krylov subspace generated by a Krylov recurrence
procedure. The reduced-order controller is called an Fquivalent Impulse Re-
sponse Energy Controller (EIREC) because it has the same impulse response

energy as the full-order controller. Since the proposed controller reduction
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method is, in fact, a model-order reduction method applied to a controller,
it is applicable to controllers obtained by any of the existing control design
approaches and is not restricted to the LQG design. This is one advantage
over the balanced controller reduction methods ([9, 22, 46]), which are based
upon the two Riccati equations which arise in the LQG design. However, the
only controller considered in this chapter is the LQG controller, because the
examples illustrated are drawn from other LQG controller reduction literature.
Computationally, the method in this chapter requires solving a Lyapunov equa-
tion of order equal to the order of the controller to be reduced. For a real large
scale system, this can be very expensive. Therefore, the method in this chap-
ter is recommended for order-reduction of controllers with moderate scale. The
reduction algorithms developed in this chapter can also be used to reduce the

order of an open-loop plant.

The organization of this chapter is as follows. In Section 4.1, the problem
of LQG controller reduction is briefly reviewed and the concept of preserving
the impulse response energy is introduced. Then, two algorithms for generat-
ing projection subspaces for controller system transformation are presented in
Section 4.2. In Section 4.3, some properties of the reduced-order controller, like
energy-equivalence, stability, minimality, and moment-matching are depicted
and proved. Finally, in Section 4.4, two examples drawn from other controller
reduction literature are used to test the proposed algorithm. Comparisons with
other methods are made. Part of the material in this chapter is presented in

Ref. [35].
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4.1 LQG Controller Reduction Problem

The system to be controlled is a linear, finite dimensional, time-invariant

system described by
z2=Az+ Bu+ Nw

y=Cz 4o (4.1)
where z € R" is the state variable vector, y € R™ is the output variable vector,
and u € R' is the input variable vector. A, B, and C are the system matrix,
input distribution matrix, and output distribution matrix, respectively. The
disturbance noises & and v are assumed to be uncorrelated zero-mean white
noise processes with intensities W > 0,V > 0, respectively. The system is

assumed to be controllable and observable. The LQG design problem is to find

a controller which minimizes the performance index
J = lim E[z7Qz + uT Ry (4.2)

with Q > 0, and R > 0, the weighting matrices. The optimal controller is of

the form [26]

G=Eq+Fy
(4.3)
u=Gq

where ¢ € R" is the controller state, and
E=A+BG-FC
F=pPCTy"? (4.4)
G =-R™'BTS

where P and S satisfy the algebraic Riccati equations

AP + PAT — PCTV-'CP + NWNT =0

4.5
ATS + SA—-SBR'BT§+Q =0 (*.5)
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The controller reduction algorithm presented in this chapter is designed
to reduce the order of the controller, Eq. (4.3). The projection subspace em-
ployed is a Krylov subspace, which is generated by a Krylov recursive process.
The recursive process uses the inverse of the controller system matrix £ to gen-
erate vectors recursively. The starting subspace is chosen to be the F' matrix
(or GT matrix) so that the generated Krylov subspace is, in fact, equivalent
to the generalized controllability (or observability) subspace. The generated
Krylov vectors are normalized such that when the controller system equation
is projected onto the Krylov subspace, the controllability (or the observability)
grammian is equal to the identity matrix and the transformed G (or F') matrix

has a special form with nonzero elements only in the first block.

Since the output of the controller is to be used to control the original
system, the proposed reduced-order controller preserves the impulse response
energy of the full-order controller. In this way, although the reduced-order con-
troller might have a response profile which deviates very much from that of the
full-order controller, the control energy in some sense is the same. The impulse
response energy is defined as the L? energy norm of the impulse response of

the controller

£ = |H|% = tr] /0 * HTH d1] (4.6)

where H = GeEtF is the impulse response of the controller. It is assumed that
the full-order controller is an asymptotically stable system. If the full-order
controller is not asymptotically stable, one can separate the unstable part and

the stable part and perform model reduction only on the stable part. The
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impulse response energy can further be expressed as

£ = trf / * FTeEGTGeP F dt] = tr[FTW,F]
0
; (4.7)
= tr[/o GeFt FFTeE'GT di] = tr[GW.GT)

where W, and W, are the observability and controllability grammians. From
Eq. (4.7) it is clear that the triple (E, F, G) and its dual (ET,GT, FT) have the
same impulse response energy. Hence, two equally applicable algorithms, one
based on (E, F, W,) and the other based on (ET, GT, W.), can be developed

for producing an Equivalent Impulse Response Energy Controller.

4.2 Equivalent Impulse Response Energy Controller
Reduction Algorithm

In this section, two algorithms for generating projection subspaces for
controller system transformation are presented. The new coordinates to which
the controller system equation is transformed are called normalized grammian
coordinates because they are coordinates in which either the controllability
grammian or the observability grammian is the identity matrix. Controller re-
duction is based upon the representation in the new coordinates. The subspace-
generating algorithm is a recursive process with either the F' matrix or the GT
matrix as the starting subspace. It is assumed that either the number of actu-
ators, [, or the number of sensors, m, is much less than the number of states, =,
so that the algorithm can work and the reduction of the controller can actually
be achieved. The first algorithm is used to generate a subspace that normalizes

the observability grammian.
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Algorithm 4.1 (EIRECWo Algorithm)
(1.) Calculate the observability grammian w,.
ETW,+W,E+GTG=0, (W,>0) (4.8)
(2.) i =1. Perform singular-value decomposition on FTW,F.

FTW,F =USUT
U=[UsUg, Y= [Ea 0}

Retain only the nonzero singular-value portion and perform normal-
ization to get L.

-1
L, = FU%a?

(3.) Form R= E7'L;.

(4.) Orthogonalize R with respect to L;, forj=1toz.
RTW,L; =0, j=1ltoi
(5.) Perform singular-value decomposition on RTW,R.

RTW,R = USUT
U = [Us Ug), 2=[20‘ 0]

If S = 0 stop; else Liys = RU.Sa.

(6)i=1t+1, gotod.
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The projection subspace is formed as L = [L1 Ly ---] in which each L; is
a matrix containing a set of vectors and will be referred to as a block of vectors,
or, simply, a block. Since the vectors in L; are normalized with respect to W,

the L subspace satisfies
LW, L=1 (4.9)

By using the above identity, the controller system equation can be transformed

to the normalized observability grammian coordinates as

§=Eg+ Fy
a=nd (4.10)
u=Gq
where
q=1Lg
and where the transformed system matrices are given by
E=LTW,EL
F=LTW,F = [FT00--- 07 (4.11)
G=GL

The transformed F' matrix has nonzero elements only in the first block. F
attains this special form because the starting subspace is F, and L is W,-

normalized.

As mentioned in Section 4.1, the dual triples (E, F, G) and (ET, G7,
FT) have the same impulse response energy. Therefore, we have the following

algorithm which normalizes the controllability grammian.
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Algorithm 4.2 (EIRECWc Algorithm)
(1.) Calculate the controllability grammian We.
EW.+W.ET+ FFT =0, (W.>0) (4.12)
(2.) i = 1. Perform singular-value decomposition on GW.GT.

GW.GT = UTU”
U = [Ua Ugl, E=[Ea 0]

Retain only the nonzero singular-value portion and perform normal-

ization to get L,.

L= GTU st

(3) Form R=E"TL;.

(4.) Orthogonalize R with respect to Lj, forj=11to1.
RTW.L; =0, j=1toi.
(5.) Perform singular-value decomposition on RTW.R.

RTW.R =UZTUT
U = [Ua Ugl, 2=|:2a 0]

IfT = 0 stop; else Liyy = RUGE;%.

(6)i=1+1, goto3.
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Algorithm 4.2 is the dual version of Algorithm 4.1 for the triple (ET, G7,
FT). Therefore ET is used for subspace recursion with GT being the starting

subspace. The L subspace generated by Algorithm 4.2 satisfies
LTW.L=1 (4.13)

and the transformed controller system matrices in the normalized controllabil-

ity grammian coordinates are

= LTEW,.L
"= LTF (4.14)
G=GW.L=[G,00---0]

s
il

with the transformed G matrix having nonzero elements only in the first block.

To perform controller reduction, let the transformed controller system

equation (4.10) be partitioned as

(8- 5 B ){a{ED

u = [C:RGT]{‘?R}

qr

(4.15)

where subscripts R and T denote retained and truncated portion, respectively.

The reduced-order controller is the r-portion of the above equation
@ = }?"q"+FRy (4.16)
u = Grir

Obviously, Fr = LTW,ELy (or LTEW,Ly, for Algorithm 4.2), Fp=LTW,F

(or LTF), and G = GLy (or GW.Lp) if L is partitioned as L = [Lg Lr].

Therefore, only Ly is needed to produce the reduced-order controller. The

subspace recursion process does not have to be carried out completely until it
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stops at Step 4. It can be terminated whenever the number of vectors generated

is equal to the predetermined order of the reduced controller.

As to which algorithm should be used; it depends on the number of actu-
ators and the number of sensors. It will be shown later that the reduced-order
controller has the property of matching a certain number of system parame-
ters of the full-order controller. The more blocks of vectors included in Lk,
the more system parameters that are matched. In order to match more sys-
tem parameters, it is desirable that the size of each block of vectors in L r be
small. Therefore, Algorithm 4.1 is preferred for a system with fewer sensors

than actuators; otherwise Algorithm 4.2 is preferred.

4.3 Some Properties of the Equivalent Impulse
Response Energy Controller
Some properties discovered for the reduced-order controllers obtained in

Section 4.2 are listed here.

Proposition 4.1 The subspace L generated by either of the Equivalent Impulse
Response Energy Controller Reduction Algorithms proposed in Section 4.2 is
both controllable and observable. If the algorithm terminates before n vectors
are generated, then the full-order controller is not minimal. A minimal optimal
controller can be produced by projecting the full-order controller onto the L

subspace.

As noted in Ref. [46], the optimal full-order controller obtained from the
LQG design is, in general, not minimal even if the system to be controlled is

minimal. In other words, the controller itself is not a completely controllable
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and/or not a completely observable system. Therefore, there might exist a con-
troller of order smaller than n which still yields the same performance as the
full-order LQG controller. An efficient controller reduction algorithm should
have the capability to detect and to produce such a minimal-order controller, if
it exists. The reduction method proposed here meets this requirement. Before
proving minimality of the reduced-order controller, a relationship between the
observable subspace (controllable subspace) and observability grammian (con-
trollability grammian) needs to be clarified. To the author’s knowledge, this

relationship has not been fully exploited in linear systems textbooks.

Theorem 4.1 Let the controllability grammain W, be erpressed in the eigen-

value decomposition form

¢T

W, = dA8T = [@. 0, [ A 0 ] [ oF ] = oA 0T (4.17)

where ®, and ®,. are eigen-subspaces associated with non-zero and zero eigen-
values, respectively. Then, the ®,. subspace is the uncontrollable subspace of
the system. The ®, subspace is the controllable subspace, and it is the same sub-

space spanned by the linearly-independent column vectors of the controllability

maltriz.

Proof: For an asymptotically stable system (A, B, C), the controllability

grammian satisfies

AW, + W.AT + BBT =0

Under the similarity transformation

A=0TAD, B=4®"B, C=C%
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the controllability grammian for the transformed system becomes dTW.® = A

and satisfies

AN+ AAT + BBT =0
or, in partitioned form

/311 /En Ac 0 + A. 0 "i’irl ég} + ?1 B? BIEZ =0
An An 0 0 0 0 AL, AL B,BT B,BT
The above equation leads to

AIIAC + Ac/iflrl + Bl.BlT = 0

and

B; =0, A =0, Axn =0

Therefore, (A1, B, C,) is the controllable part of the system. And hence &,

is the controllable subspace and @, is the uncontrollable subspace. [ |

There is a similar theorem for the observability grammian.

Theorem 4.2 Let the observability grammain W, be expressed in the eigen-

value decomposition form
A [ e ,
W, = [®, ®,,) 2| = QA0 (4.18)
0 o, °
where ®, and ®,, are eigen-subspaces associated with non-zero and zero eigen-
values, respectively. Then, the ®,, subspace is the unobservable subspace of the
system. The ®T subspace is equivalent to the subspace spanned by the linearly-

independent row vectors of the observability matriz.
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Proof: Although a proof similar to that for the controllability grammian can be
approached from the Lyapunov equation, we will prove it by using the definition
of the unobservable subspace. For the triple (A, B, C), an unobservable state

2o is a state that has no contribution to the output and satisfies
y=Cetzg=0 for t>0 (a)

We want to prove that if z, satisfies Eq. (a), then it is in ®,, and is orthogonal
to ®,.

It can be shown that
loli* = [~ 4Ty = Wozo = 2 2N 2] 20 (b)
0

If 2, satisfies Eq. (a), then |jy]|? in the above equation is equal to zero which
leads to Tz = 0. If ®Tz = 0, then ||y||> = 0 which leads to y = 0
and zo is an unobservable state. Therefore, the unobservable state is in the
subspace ®,,. Finally, by recalling that Ce?t and the observability matrix
[CT,CTAT,...,CT(AT)*|T play same role in the observability study [33],
the conditions ®72,=0 and Ce*'z=0 simply state that ®7 is the same sub-
space spanned by the row vectors of the observability matrix. This completes

the proof. [ ]

By using the relationships between the grammians and the observable
subspace and controllable subspace, Proposition 4.1 can be proved as follows.
Proof: The following proof is for Algorithm 4.1. The proof for Algorithm
4.2 is similar. Apparently, the R vector generated at Step 3 in Algorithm
4.1 is contained in the generalized controllability matrix [F' E7'F - - E-G-VF].

Therefore, R is in the controllable subspace. At the normalization step (Step
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5, singular-value decomposition), the unobservable part is removed from R
because RTW,R = RT®,A,®T R is singular if and only if the column vectors
in R are linearly-dependent and/or R is orthogonal to ®,. Therefore, to retain
only the nonzero singular-value portion is to retain only the observable subspace
in L. If the algorithm terminates at Step 5 before n vectors are generated, then,
obviously, the full-order controller is not minimal. The reduced-order controller
obtained by projecting the full-order controller onto the L subspace is a minimal

controller. |

The full-order controller is assumed to be asymptotically stable. The

reduced-order controller has the following stability property.
Theorem 4.3

(1.) The reduced-order controller obtained by Algorithm 4.1 is asymptotically
stable if and only if (Ex, Gg) is observable.

(2.) The reduced-order controller obtained by Algorithm 4.2 is asymptotically
stable if and only if (Eg, Fy) is controllable.

(3.) The unstable poles of the reduced-order controller lie on the imaginary azis.

Proof: There is a similar proof in Ref. [41]. The proof shown here is based
upon the previous formulation.

(1). Premultiply and postmultiply Eq. (4.8) by LT and Ly respectively.
R
LTETW,Ly + LXW,ELy 4+ LEGTGLy =0

Then,
ET +Ex4+GiGr=0 (4.19)
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By the uniqueness of the solution of
E}TQ.IWOR + WORER + (_;’CIEG’R = 0

if E, is asymptotically stable, then the observability grammian for (Ex, Gr)
is the identity matrix, which is nonsingular, and hence (Eg, Gg) is observable.
And, if (Ex, Gr) is observable, then the observability grammian of (Ex, Gg) is
the identity matrix, which is positive definite, and hence Ey is asymptotically
stable.

(2). The proof is similar.

(3). A proof for the location of unstable poles is given in Ref. [32] and repro-
duced in Ref. [41]. Therefore, it is omitted here. =

The reduced-order controller is called an Equivalent Impulse Response
Energy Controller because it conserves the impulse response energy of the full-

order controller.

Proposition 4.2 If the reduced-order controller obtained by Algorithm 4.1 or
Algorithm 4.2 is asymptotically stable, then it has the same impulse response
energy as the full-order controller. The impulse response energy is defined as

the L2-norm of the impulse response of the controller, Eqs. (4.6), (4.7).

Proof: For Algorithm 4.1, the observability grammian for the controller system
in L-coordinates is the identity matrix. Since the defined impulse response

energy is invariant under coordinate transformation, it can be shown that
£ = tr[FTW,F] = tr[FTF| = tr[F Fy] (4.20)

due to the special form of the F matrix.

The proof for Algorithm 4.2 is similar. |
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In fact, as will be depicted in Theorem 4.4, the reduced-order controller
matches a set of system parameters of the full-order controller, and the impulse
response energy is one of the parameters matched. Furthermore, the following
proposition, which is similar to the one in Ref. [24] can be used to calculate

the error norm of the impulse response energy.

Proposition 4.3 The error of the impulse response H.,=H-—Hg can be mea-

sured by
I HLJ2, = tr] /0 ® HTH, di] = 24r[FTW,F] - 2tr[FTZF] (4.21)

where Z satisfies

EIZ4+ZE+GLG=0
or by

VHlE = erl [ HHT df] = 2r[GW.GT) = 2r[GaXGT] (422)

where X satisfies

E. X+ XET+ FRFT=0
Proof: For Eq. (4.21),

|H\2: = IH|Z: + || HallZe — 2tr( /0 FrePRGLGe F di]

2r[FTW,F] — 2tr[F1 ZF)

with Z satisfying the corresponding Lyapunov equation. Eg. (4.22) can be

proved similarly. |
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Another interesting property of the reduced-order controller, in addition
to preserving the impulse response energy, is that it matches a set of sys-
tem parameters. This set of parameters includes the so called low-frequency
moments and low-frequency power moments [41]. For the triple (4, B, C), low-
frequency moments, sometimes called time moments [15], are defined as C A"'B
for i > 0, which are the coefficient matrices of the Taylor series expansion of
the transfer function. Low-frequency power moments are defined in Ref. [41]
as CA~'W,(AT)~ICT with 1,7 > 0 and W, the controllability grammian. Be-
sides low-frequency moments and low-frequency power moments, other mean-
ingful parameters are Markov parameters C A'B and the high-frequency power
moments C A'W,(AT)?CT. The ¢-COVER method of Yousuff et al. [47] pro-
duces a reduced-order controller that matches ¢ Markov parameters and ¢ high-
frequency power moments CA'W,CT which are the derivatives of the output
covariance matrix. Since these parameters and moments constitute sets of data
that can describe the system transfer function and output autocorrelation, it
is reasonable to seek a reduced-order system that matches as many parame-
ters of the full-order system as possible. The reduced-order controller proposed
here turns out to match the low-frequency moments and low-frequency power
moments because the projection subspace is the generalized controllability (or

observability) matrix.

Theorem 4.4:

(1.) If the full-order controller is observable, then the reduced-order controller
(Eq, Fr, Gg) obtained by Algorithm {.1 matches:

low-frequency moments GE-'F, i=1,2,...,k—1



(2)

(3)
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low-frequency power moments FT(ET)“WOE‘jF, t,j=1,2,...,k—1
where k is number of blocks contained in the projection subspace Lr =
[Ly Ly ... L)

If the full-order controller is controllable, then the reduced-order controller

(Er, Fr, Gr) obtained by Algorithm {.2 matches:

low-frequency moments GE-'F, i=1,2,...,k—1
low-frequency power moments GE- W (ET)GT, i,j=1,2,...,k—1

where k is number of blocks contained in the projection subspace Lp =

[Li Lo ... L.

If the full-order controller is neither controllable nor observable, but has the
same controllable subspace as observable subspace, then the above moment-

matching properties still hold.

Proof: (Part of the proof shown here follows a similar proof given in Ref. [41]).

(1). If the full-order controller is observable, then the subspace Ly is equal to
the generalized controllability subspace [FF E~'F E7%F ... E-*-1F). So E-'F

can be represented as a linear combination of Lg

E7'F = Lpo

Then,

LalTW,E~F = LoLTW,Lpa = Lza = E7'F, fori=0,1,....k—1
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Secondly, by using the above equality, it can be shown that

LTW,E~F = (LIW,Ex) " (LAW,ER)'LyW,E™'F
= (LTW,Ex) " (LXW,Ez) ' LIW,E(L.LLW,E~'F)
= (LTW,ER) "(LAW,ER)'LIW,E~¢-VF

(LYW,ELR) " LEW,F

= (Ep)'Fr fori=0,1,...,k—1
Therefore,
Gr(ER) " Fr = GLy(LTW,E~'F) = GE™'F, fori=0,1,....,k—1
The low-frequency power moment matching property can be proved similarly.
FT(ET)(Ep) Fn = FT(ET)W,LLLW,E~F = FT(ETy""W,E™'F

fori,j =0,1,...,k—1.
(2). Similar proof for Algorithm 4.2.
(3). If the controllable subspace and the observable subspace are the same,
then it is true that Ly is equal to [ E-'F E7*F ... E~*=1F] for (1), and

the same proof follows. [ |

It is to be pointed out here that the low-frequency power moments
FT(ET)~*W,E~iF in (1) are not the same as the low-fréquency power mo-
ments defined in Ref. [41]. The low-frequency power moments defined here are
not related to the coefficient matrices of the Laurent series of the output power
spectral density. Nevertheless, they still constitute pieces of data for parame-

ter matching. The other thing to be mentioned is that if £ instead of E~1 is
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used in the Algorithm 4.1 to generate the projection subspace, then the gen-
erated subspace is equivalent to [F EF E*F ... E*-'F). The reduced-order
controller would match the Markov parameters and high-frequency power mo-
ments and hence would be a g-COVER. However, numerical experience shows
that matching high-frequency moments gives a poor reduced-order controller
compared with matching low-frequency moments. At least for the two exam-
ples shown in the following section, matching low-frequency moments produces

a reduced-order model with much better closed-loop performance.

4.4 Examples
4.4.1 Controllers For A Four-Disk System

The first example is given by Enns [10] and is used in Ref. [13] and
Ref. [28] to compare six different controller reduction methods. It is used as
an example here to illustrate the efficiency of the current controller reduction
method. The plant to be controlled is a four-disk system and is linear, time-
invariant, SISO, neutrally-stable, non-minimum phase, and of eighth order.
Numerical values of the system A, B, and C matrices (in observable canonical

form), the weighting matrices @ and R, and the noise intensities V and W are

" —0.1610 1 0 0 0 0 0 0
~6.0040 0 1 0 0 0 0 0
~0.5822 00 100 00
4| 99835 0001000
~0.4073 0 0 0 0 1 0 0
~3.9820 0 0 0 0 0 1 0
0O 00000011

| 0 000000 O
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BT = [0, 0, 0.0064, 0.00235, 0.0713, 1.0002, 0.1045, 0.9955]
C=[10000000]

N=B

Q=(1.0x10"%)HTH; H=[00000.55 11 1.32 18.0]
R=1

W=¢q (g =0.01,0.1,1,10,100,1000,2000)

V=1

Disturbance noise intensity parameter ¢, is used as a design parameter.
For this SISO system, we can use either Algorithm 4.1 or Algorithm 4.2. These

two algorithms give exactly the same results.

First, different full-order optimal controllers are obtained by LQG de-
sign for different values of g, (g2 = 0.01, 0.1, 1, 10, 100, 1000, 2000). Then,
order reduction is carried out on each full-order controller. We have checked
the closed-loop system stability of each reduced-order controller and summa-
rized the results in Table 4.1 to compare the current method (EIREC method)
with the other methods. N, in Table 4.1 is the order of the reduced-order
controller. We see that only the optimal projection method produces stable
designs for all cases. This is because the optimal projection method is not a
linear quadratic reduction method which performs reduction to the full-order
optimal controller obtained by LQG design. Instead, the system matrices of
an optimal projection reduced-order controller are obtained by solving a pa-
rameter optimization problem which minimizes the performance index J in Eq.

(4.2). Therefore, in theory, the optimal projection method should produce an
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optimal reduced-order controller which is guaranteed to stabilize the closed-
loop system, if the solution scheme converges to an appropriate solution at
all. Hence, at least from a theoretical point of view, all the other methods
cannot compete with the optimal projection method in regard to stability and
performance. However, computationally, the other linear quadratic reduction
methods are certainly more efficient than the optimal projection method. Here
we compare the current method only with the other linear quadratic reduction

methods.

The étability comparison is apparent from Table 4.1. The EIREC method
is better than Glover’s method[12], Davis and Skelton’s balanced controller re-
duction method[9], and Yousuff and Skelton’s Component Cost Analysis (CCA)
method[45], but is not so good as Enns’ method[10] and Liu and Anderson’s
method[28] as far as absolute percentage of stable designs is concerned. How-
ever, one interesting thing to note is that the current method seems to have
a trend that if the lower-order reduced controller can produce a stable closed-
loop system, then the higher-order one also can. This trend is not seen in the
other methods. It is usually expected and preferred that a higher-order con-
troller has better performance and stability than a lower-order controller. In
addition to stability comparisons, the accuracy of closed-loop response is also
compared. Comparisons of unit step responses and unit impulse responses for
a second-order controller designed with ¢, = 1.0 and a fifth-order controller
designed with g; = 100 are shown in Figures 4.1-4.8. It is seen that for the
low noise intensity case, the second-order corntrroller produced by fhe current
method has about the same performance as the controller obtained by methods

1 and 5. For the high noise intensity case, although the fifth-order controller

C-Q_
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produced by the current method gives a stable closed-loop system, the damping
is very low (the closed-loop pole with the least damping is —0, 0022 + 1.3792:).
However, the sixth-order controller has quite accurate closed-loop responses

(Figures 4.9, 4.10).

4.4.2 Controllers For A Solar Optical Telescope Spacecraft

The second example considered here is the pointing and shape control
of the “Solar Optical Telescope” spacecraft example discussed in Ref. [45] and
Ref. [16]. The original model has 44 modes and is reduced to 10 modes by
modal cost analysis as discussed in Ref. [45]. In the first-order state-space

form, the matrices describing this 20-state problem are given by

[ 0o I oo _
a[ 8 B ] eew=[8], c-wu
¢ = 0.001
w = diag[14.853,0.914,10.817, 3.652,153.43,53.861, 3.63,149.37, 0, 0]
pry[l 0 0
Q=[O ] 0 10 0 ([P0, R=pl
0 0 1073

W= 10—4187 V = 10_]513

with matrices 8 and P given in Table II of Ref. [45].

Design parameter p in the control weighting matrix R was varied to study
controllers of different bandwidth. Since in this problem there are fewer sensors
than actuators, Algorithm 4.1 is used to carry out the reduction. The design

comparison is to plot the regulation cost J. = E[z7Qxz] versus the control cost
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J, = E[uTu] for different orders of controller and for different values of p. The
results are shown in Figures 4.11-4.13. Comparing Figures 4.11 and 4.12, it
is seen that the tenth-order reduced-order controller obtained by the current
method has a slightly better performance than the tenth-order controller ob-
tained by component cost analysis. The sixth-order case of the current method
" is, however, not as good as the one produced by the component cost analysis.
The fourth-order case of the current method is not shown in Figure 4.12 be-
cause the curve lies outside of the window (For p = 0.5, 1, 5, 10 the control
costs are 1.3897E —7, 1.3650E —5, 1.3240E—5, 1.3114E 35, and the regu-
lation costs are 7.9732E —8, 1.3105E—7, 4.2024FE—7, 6.9699E—T7). Figure
4.13 shows smoother cost curves of the sixth, tenth, and twelfth-order reduced
controllers of the current method. It is seen again here that the higher-order
controller tends to have better performance than the lower-order controller. In
contrast to this appealing result, component cost analysis produces a fourth-
order controller with better performance than the sixth and tenth-order con-
trollers (see Figure 4.11). In addition to this performance comparison, we have
also checked the closed-loop stability. It is seen that for the current method,
all of the reduced-order controllers with order higher than three produce stable
closed-loop systems for all p values from 0.01 to 1000. On the other hand,
the tenth-order controller and the fourth-order controller of component cost

analysis fail to give stable designs for p < 0.05 and p < 0.5, respectively.

From the above two examples, one can see that the present controller
reduction method produces fairly good closed-loop designs. Computationally,
the current method is also economical compared with the other methods. Enns’

frequency-weighted balanced realization method requires solving two Lyapunov
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equations of order larger than n (order of the full-order controller), depend-
ing on the order of the input and output weightings, in addition to solving
one unsymmetric eigenvalue problem of order n. The stable factorization and
balancing method of Liu and Anderson [28] and the two balanced controller
reduction algorithms of Yousuff and Skelton [46] and of Davis and Skelton [9]
all involve the solution of two Lyapunov equations and two singular-value de-
compositions of order n. The component cost analysis method requires solving
one Lyapunov equation and two singular-value decompositions of order n. The
current controller reduction method needs to solve only one Lyapunov equa-
tion of order n and to perform some small scale singular-value decompositions.
Therefore, the computational burden of the current method is lower than that

of the other methods.
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Table 4.1: Stability of the reduced-order controller by different methods
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Chapter 5

CONCLUSIONS

A decentralized suboptimal linear quadratic design procedure which com-
bines substructural synthesis, model reduction, decentralized control design,
and controller reduction is proposed for the control design of flexible struc-
tures. The structure to be controlled is decomposed into several substructures
by using substructuring decomposition. Then, a Krylov model reduction al-
gorithm is employed to reduce the order of each substructure to a size that is
Riccati-solvable. For each substructure, a subcontroller is designed by using a
linear quadratic optimal control method. After all subcontrollers are designed,
a controller synthesis scheme called Substructural Controller Synthesis is used
to assemble all subcontrollers into a global controller. Finally, a controller
reduction scheme which produces a reduced-order controller with equivalent
impulse response energy is used to reduce the order of the global controller to

a reasonable size for implementation.

Substructural Controller Synthesis (SCS) is a decentralized control de-
sign scheme for flexible structures. The method relieves the computational
burden associated with dimensionality. The SCS design scheme is a highly
adaptable controller synthesis method for structures with varying configura-

tion, or varying mass and stiffness properties.

Equivalent Impulse Response Energy Controller (EIREC) Reduction Al-
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gorithm is an efficient controller reduction method. The method produces a
reduced-order controller that preserves impulse response energy and matches
low-frequency moments and low-frequency power moments of the full-order
controller. It is a model reduction algorithm applied to controller reduction

and is applicable to controllers designed by any existing methods.

Some recommendations for future research direction are listed below.

e Robustness of SCS controllers is an interesting topic and needs to be inves-

tigated.

e Application of substructuring decomposition and Substructural Controller
Synthesis to general linear time-invariant systems needs to be explored. A
system representation in Lanczos coordinates may be a good starting point

for substructuring decomposition and SCS analysis.

o Incorporation of Substructural Controller Synthesis with the well-developed
Component Mode Synthesis (CMS) is another possibility for designing con-

trollers for flexible structures.

e Suboptimality and stability of SCS controllers is an important topic. It
would elevate the SCS method from a design technique level to a control
theory level if a suboptimality study similar the one in Ref. [20] can be

accomplished.



BIBLIOGRAPHY

[1] Ahmed, N. U., Optimal Control of Distributed Parameter Systems, Nasir
Uddin, NY, 1981.

[2] Bantell, M. H., “Precision Pointing and Control of Flexible Spacecraft,”
Structural Dynamics and Control Interaction of Flezible Structures, Pro-
ceedings of a workshop held at NASA Marshall Space Flight Center,
Huntsville, AL, April 22-24, 1986, pp. 505-537.

[3] Benfield, W. A. and Hruda, R. F., ¢ Vibration Analysis of Structures by
Component Mode Substitution,” ATAA Journal, Vol. 9, No. 7, pp- 1255~
1261, 1971.

[4] Blelloch, P. A. and Carney, K. S., “Modal Selection In Structural Dynam-
ics,” Proc. Tth International Modal Analysis Conference, Union College,
Schenectady, NY, pp. 742-749, 1989.

[5] Cornwell, R. E., Craig, R. R., Jr., and Johnson, C. P., “On the Application
of the Mode Acceleration Method to Structural Engineering Problems,”
Earthquake Eng. & Struc. Dyn., Vol. 11, pp. 679-688, 1983.

[6] Craig, R. R. Jr., Structural Dynamics - An Introduction to Computer
Methods, John Wiley & Somns, Inc. NY, 1981.

[7] Craig, R. R.Jr., “A Review of Time-Domain and Frequency-Domain Com-
ponent Modes Synthesis Methods,” Combined FEzrperimental/Analytical

105



[9]

[10]

[11]

[12]

[13]

[14]

106

Modeling of Dynamic Structural Systems, AMD-Vol. 67, ASME, NY, pp.
1-30, 1985. Also International Journal of Analytical and Ezperimental
Modal Analysis, Vol. 2, No. 2, pp. 59-72, April 1987.

Craig, R. R., Jr. and Su, T. J., “A Review of Model Reduction Methods
For Structural Control Design,” International Conference on Dynamics of
Flezible Structures, Cranfield Institute of Technology, United Kingdom,
May 15-18, 1990.

Davis, J. A. and Skelton, R. E., “Another Balanced Controller Reduction
Algorithm,” System Control Lett., Vol. 4, 1984, pp. 79-83.

Enns, D. F., “Model Reduction for Control System Design,” Ph.D. Dis-
sertation, Stanford University, Palo Alto, CA, 1984.

Enns, D. F., “Model Reduction With Balanced Realizations: An Error
Bound And A Frequency Weighted Generalization,” Proc. 23rd Conference
on Decision and Control, Las Vegas, NV, pp. 127-132, Dec. 1984.

Glover, H., “All Optimal Hankel-Norm Approximations of Linear Multi-
variable Systems and Their L-Error Bounds,” Int. J. Contr., Vol. 39, 1984,
pp. 1115-1193.

Greeley, S. W. and Hyland, D. C., “Reduced-Order Compensation: Linear-
Quadratic Reduction Versus Optimal Projection,” J. Guidance, Control,
and Dynamics, Vol. 11, No. 4, 1988, pp. 328-335.

Gregory, C. Z., “Reduction of Large Flexible Spacecraft Models Using
Internal Balancing Theory,” AIAA J. Guidance, Control, and Dynamics,



[15]

[16]

[17]

18]

[19]

[20]

21]

107

Vol. 7, No. 6, pp. 725-732, 1984.

Hickin, J. and Sinha, N. K., “Model Reduction for Linear Multivariable
Systems,” IEEE Trans. Automat. Contr., Vol. 25, No.6, pp. 1121-1127,
1980.

Hyland, D. C., “Comparison of Various Controller-Reduction Meth-

ods: Suboptimal versus Optimal Projection,” AIAA Dynamics Specialists
Conf., Palm Springs, CA, May 1984, pp. 381-389.

Hyland, D. C. and Bernstein, D. S., “The Optimal Projection Equations
for Fixed-Order Dynamic Compensation,” IEEE Trans. Automat. Contr.,
Vol. 29, No. 11, pp. 1034-1037, 1984.

Ikeda, M. and Siljak, D. D., “Overlapping Decompositions, Expansions,
and Contractions of Dynamic Systems,” Large Scale Systems, Vol. 1, pp.
29-38, 1980.

Ikeda, M., Siljak, D. D., and White, D. E., “An Inclusion Principle for
Dynamic Systems,” IEEE Trans. Automat. Control, Vol. 29, No. 3, pp.
244-249, 1984.

Tkeda, M., Siljak, D. D., and White, D. E., “Decentralized Control With
Overlapping Information Sets,” J. Optim. Theory Appl., Vol. 34, No. 2,
pp. 279-309, 1981.

Johnson, M. A. and Grimble M. J., “Recent Trends in Linear Optimal
Quadratic Multivariable Control System Design,” IEE Proceedings, Vol.
134, No. 1, pp. 53-71, 1987.



108

[22] Jonckhere, E. A. and Silverman, L. M., “A New Set of Invariants for
Linear Systems - Application to Reduced Order Compensator Design,”

IEEE Trans. Automat. Control, Vol. 28, No. 10, 1983, pp.953-964.

[23] Jonckheere, E. A., “Principal Component Analysis of Flexible Systems -
Open-Loop Case,” IEEE Trans. Automat. Control, Vol. AC-29, No. 12,
pp. 1095-1097, 1984.

[24] Kabamba, P. T., “Balanced Gains and Their Significance for L? Model
Reduction,” IEEE Trans. Automat. Control, Vol. 30, No. 7, 1985, pp.
690-693.

[25] Kline, K. A., “Dynamic Analysis Using a Reduced Basis of Exact Modes
and Ritz Vectors,” AIAA Journal, Vol. 24, No. 12, pp. 2022-2029, 1986.

[26] Kwakernaak, H. and Sivan, R., Linear Optimal Control Systems, New
York: Wiley, 1972.

[27] Lions, J. L., Optimal Control of Systems Governed by Partial Differential
Equations, Berlin, 1971.

[28] Liu, Y. and Anderson, B. D. O., “Controller Reduction Via Stable Factor-
ization and Balancing,” Int. J. Contr., Vol. 44, No. 2, 1986, pp. 507-531.

[29] Moore, B. C., “Principal Component Analysis in Linear Systems: Con-
trollability, Observability, and Model Reduction,” IEEE Trans. Automat.
Control, Vol. AC-26, No. 2, pp. 17-32, 1981.



109

[30] Nour-Omid, B. and Clough, R. W., “Dynamic Analysis of Structures Using
Lanczos Co-ordinates,” Earthquake Eng. & Struc. Dyn., Vol. 13, pp. 271~
275, 1983.

[31] Nurre, G. S., Ryan, R. S., Scofield, H. N., and Sims, J. L., “Dynamics and
Control of Large Space Structures,” J. Guidance, Control, and Dynamics,

Vol. 7, No. 5, pp. 514-526, 1984.

[32] Pernebo, L. and Silvermann, L. M., “Model Reduction via Balanced State
Space Representations,” IEEE Automat. Control, Vol. 27, No. 2, 1982, pp.
382-387.

[33] Reid, J. G., Linear System Fundamentals, McGraw-Hill Book Co., 1983.

[34] Skelton, R. E. and Hughes, P. C., “Modal Cost Analysis for Linear Matrix-
Second-Order Systems,” J. Dynamic Systems, Measurement, and Control,

Vol. 102, pp. 151-158, 1980.

[35] Su, T. J. and Craig, R. R. Jr., “Controller Reduction by Preserving Im-
pulse Response Energy,” presented at 1989 AIAA Guidance, Navigation
and Control Conference, Boston, MA, pp. 55-64, August 14-16, 1989.

[36] Su, T. J. and Craig, R. R., Jr., “Krylov Model Reduction Algorithm For
Undamped Structural Dynamics Systems,” accepted for publication by J.

Guidance, Control, and Dynamics.

[37] Su, T. J. and Craig, R. R., Jr., “Model Reduction and Control of Flexible

Structures Using Krylov Vectors,” to appear J. Guidance, Control, and



[42]

[43]

110

Dynamics. Also 30th AIAA/ASME/ASCE/AHS/ASC Structures, Struc-
tural Dynamics and Materials Conference, Mobile, AL, pp. 691-700, April
1989.

Su, T. J. and Craig, R. R. Jr., “Substructuring Decomposition and
Controller Synthesis,” 81st AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics and Materials Conference, San Diego, CA, April
1990.

Su, T. J. and Craig, R. R. Jr., “Substructural Controller Synthesis,” pre-
sented 9rd Annual Conference on Computational Control, Oxnard, CA,
August 1989.

Verriest, E. 1., “Suboptimal LQG-Design and Balanced Realizations,”
Proc. 20th IEEE Cof. Decision and Contr., pp. 686-687, Dec. 1981.

Villemagne, C. D. and Skelton, R. E., “Model Reduction Using a Pro-
jection Formulation,” IEEE Trans. Automat. Contr., Vol. 46, No.6, pp.
2141-2169, 1987.

Wilson, E. L., Yuan, M. W., and Dickens, J. M., “Dynamic Analysis by
Direct Superposition of Ritz Vectors,” Earthquake Eng. & Struc. Dyn.,
Vol. 10, pp. 813-821, 1982.

Young, K. D., “Approximate Finite Element Models for Structural Con-
trol,” Proceedings of the 24th IEEE Conference on Decision and Control,
Fort Lauderdale, FL, pp. 940-945, December 11-13, 1985.



[44]

[45]

[46]

[47]

[48]

[49]

[50]

111

Young, K. D., “Controlled Component Synthesis,” Preprint paper, UCRL
98063, Lawrence Livermore National Laboratory, University of California,

Livermore, CA, December 21, 1987.

Yousuff, A. and Skelton, R. E., “Controller Reduction by Component Cost
Analysis,” IEEE Trans. Automat. Control, Vol. 29, No. 6, pp. 520-530,
1984.

Yousuff, A. and Skelton, R. E., “A Note on Balanced Controller Reduc-
tion,” IEEE Trans. Automat. Control, Vol. 29, No. 3, pp. 254-256, 1984.

Yousuff, A., Waige, D. A., and Skelton, R. E., “Linear System Approxima-
tion via Covariance Equivalent Realizations ,” J. Math. Analy. & Appl.,
Vol. 106, pp. 91-115, 1985.

Yousuff, A., “Application of Inclusion Principle to Mechanical Systems,”
Proceedings of 1988 American Control Conference, Atlanta, GA, June 15-
17, pp. 1516-1520, 1988.

Advances in Large Scale Systems, Ed. Jose B. Cruz, Jr., Volume 1, Jai

Press Inc., Greenwich, Connecticut, 1984.

Control and Dynamics Systems, Advances in Theory and Applications,
Ed. C. T. Leondes, Vols. 22, 23, 24: Decentralized/Distributed Control
and Dynamics Systems, Academic Press, Inc., London, 1985, 1986.






